Colloidal flocculation

Flocculation

Israelachvili, *Intermolecular and Surface Forces*, 3rd ed., Academic Press, New York, 2007.

Double layer and vdw interactions (DLVO, 1941 & 1948)

$$U_{\rm e} \approx 64 k_B T a n_\infty \gamma^2 \kappa^{-2} e^{-\kappa L}$$

$$U_{\rm vdw} \approx \frac{aA_H}{12D} \qquad D \ll a$$

Critical counter-ion concentration for flocculation:

$$n_{\rm crit} = \frac{49.6}{z^6 l_b^3} \left[\frac{k_B T}{A_H} \right] \tanh^4 \left(\frac{e z \psi_s}{4k_B T} \right)$$

 $l_b = e^2/4\pi\varepsilon\varepsilon_0k_BT$ Bjerrum length

Doublet formation

$$t_p = \frac{\pi \mu a^3 w}{\phi k_B T}$$

W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989).

Flocculation kinetics

Higashitani & Matsuno, 1979.

Floc structure

 $\xi \sim a k^{d_f}$ d_f Fractal dimension

D. Weitz and M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984).D. Weitz, J. Huang, M. Lin, and J. Sung, Phys. Rev. Lett. 53, 1657 (1984).

Percolation

Flocs close-packed:

 $\phi_k \approx \phi_{\rm rcp} = 0.64$ $\phi_k = \phi_{\rm rcp} k^{1-3/d_f}$

$$\xi = a(\phi_{\rm rcp}/\phi)^{1/(3-d_f)}$$

Gauthier-Manuel et al., J. Phys. 48:869, 1987.

Gel rheology

Gel rheology

- Elastic modulus, yield stress, yield strain
- Model and "real" systems:
 - polystyrene latices in water flocculated (salts) or with non-adsorbing polymer
 - poly(methyl methacrylate) in organic solvents with non-adsorbing polymer – "depletion" gels
 - "organophilic" silica in organic solvents with non-adsorbing polymer or "thermoreversible"
 - mineral suspensions typically aqueous, flocculated by addition of salts

Gel rheology — flocculated polystyrene latices

Buscall, R. et al. "The rheology of strongly-flocculated suspensions." J. Non-Newtonian Fluid Mech. 24, 183–202 (1987).

Polystyrene latex in salt solutions

 $P_y \propto G \propto \phi^x$

$$x \sim 4.0 - 5.0$$

Compression — dewatering and filtration

Gel rheology — Stöber organo-silica

Chen, M. & Russel, W. B. "Characteristics of flocculated silica dispersions." J Colloid Interface Sci. 141, 564–577 (1991).

© 2022 Eric M. Furst—Chemical & Biomolecular Engineering, University of Delaware—furst@udel.edu

Gel rheology — Stöber organo-silica

Rueb, C. J. & Zukoski, C. F., "Viscoelastic properties of colloidal gels." J. Rheol. 41, 197–218 (1997).

TABLE II. Power-law exponents for gel mechanical properties.

Temp	0 °C	1 °C	1.5 °C	2 °C	3 °C	3.5 °C	4 °C
$\frac{x^{a}}{t^{b}}$	4.4	4.8	4.7	4.4	5.1	5.0	5.6
	-4.0	-4.2	-3.9	-3.7	-1.8	-0.8	-0.7

^aPower-law exponent relating G'_{∞} to volume fraction: $G'_{\infty} \sim \phi^x$. Uncertainties in x are ±0.4. ^bPower-law exponent relating γ_M to volume fraction: $\gamma_M \sim \phi^t$. Uncertainties in t are ±0.2.

Gel rheology — Stöber organo-silica

Rueb, C. J. & Zukoski, C. F., Viscoelastic properties of colloidal gels. J. Rheol. 41, 197–218 (1997).

Mineral suspensions

Johnson, S. B., Franks, G.V, Scales, P. J. & Healy, T.W. "Surface chemistry–rheology relationships in concentrated mineral suspensions." Int. J. Miner. Process. 58, 267–304 (1999); Buscall, R., Ettelaie, R. & Healy, T.W., "Yield stress and contact forces in coagulated oxide dispersions." J. Chem Soc. Faraday Trans 93, 4009–4015 (1997).

Depletion gel — silica, non-adsorbing polymer

H. K. Chan, et al., Phys. Rev. E, 85, 041403 (2012). N. Koumakis, et al., Soft Matter, 7, 2456-2470 (2011). S. Ramakrishnan, et al., Phys. Rev. E, 70, 040401 (2004).

Colloid-polymer mixtures

Laurati, M. et al. Structure, dynamics, and rheology of colloid-polymer mixtures: From liquids to gels. J. Chem. Phys. 130, 134907 (2009).

© 2022 Eric M. Furst—Chemical & Biomolecular Engineering, University of Delaware—furst@udel.edu

Gel rheology — challenges

- Poor reproducibility
- Sensitivity to method of preparation
- Sensitivity to shear history (thixotropic)
- Limited range of linear viscoelastic response
- Slip in rheometers
- Sedimentation