
Useful mathematics A
A.1 Fourier Transforms 409

A.2 Relating Fourier and Laplace
Transforms 412

A.3 Kramers–Kronig relations 414

A.4 Vector harmonic solutions
to Stokes equations 415

A.5 Dynamics of an oscillating
particle 419

A.1 Fourier Transforms
The Fourier Transform is commonly used to analyze the dynamics of
a system. The Fourier Transform of a function f (t) is

f̃ (ω) = F{f (t)} =
∫ ∞

–∞
f (t)e–iωtdt, (A.1)

while the inverse Fourier Tranform is defined as

f (t) = F –1{f̃ (ω)} =
1
2π

∫ ∞

–∞
f̃ (ω)eiωtdω. (A.2)

Using integration by parts, it is straightforward to show that the
Fourier Transform of f ′(t) = df /dt is∫ ∞

–∞
f ′(t)eiωtdt = iωf̃ (ω). (A.3)

Likewise, the Fourier Transform of f ′′(t) = d2f /dt2 is∫ ∞

–∞
f ′′(t)eiωtdt = –ω2 f̃ (ω). (A.4)

The Fourier Transforms and inverse transforms of many functions
can be found in tables and classic texts like Bracewell (1986). The
Fourier Transform of a convolution is particularly useful. The theo-
rem states that Fourier Transform of the convolution of functions f (t)
and g(t)

f ∗ g =
∫ t

–∞
f (t′)g(t – t′)dt′, (A.5)

where ∗ denotes the convolution operation, is the product of the
Fourier Transforms of those functions,∫ ∞

–∞
(f ∗ g)eiωtdt = f̃ (ω)g̃(ω). (A.6)

Table A.1 summarizes several other useful Fourier-Transform pairs.
However, many functions of interest to rheology do not have a Fourier
Transform because eqn A.1 fails to converge at its infinite limits.
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Table A.1 Useful Fourier and Laplace Transform pairs.

Fourier Transforms

Time domain f (t) Frequency domain f̃ (ω)

Constant a Delta function 2πaδ(ω)

Harmonic aeiω0t Delta function 2πaδ(ω – ω0)

Exponential ae–|t|/τ Lorentzian 2a 1/τ
ω2+(1/τ)2

Gaussian ae–(t/τ)
2

Gaussian
√
πaτ e–(ωτ/2)

2

Laplace Transforms

Time domain f (t) Frequency domain f̃ (s)
Differentiation f ′(t) sF(s) – f (0)

Second derivative f ′′(t) s2F(s) – sf (0) – f ′(0)

tf (t) Differentiation F ′(s)

Linear (one sided)
1

t ·H(t) 1
s2

Exponential (one sided) e–at ·H(t) 1
s+a

Exponential e–a|t| a
s2+a2

Sine sinωt ω

s2+ω2

Cosine cosωt s
s2+ω2

Power law
2

tp �(p+1)
sp+1

1H(t) is the Heaviside step function.
2 �(x) =

∫∞
0 er rx–1dr is the Gamma function. If x is a positive integer, then �(x + 1) = x!

A.1.1 Unilateral Fourier and Laplace
Transform

The Laplace Transform is defined as

F(s) = L {f (t)} =
∫ ∞

0
f (t)e–stdt. (A.7)

The transform converges in the upper limit by multiplying the func-
tion f (t) a damping factor exp(–σ t) such that the Laplace Transform
variable is a complex number s = σ + iω. The Laplace Transform is
suited to causal functions for which the behavior of f (t) for t > 0 is of
interest.

The Unilateral Fourier Transform, also known as the Fourier–
Laplace Transform or the one-sided Fourier Transform, is found by
analytic continuation on the pure imaginary axis by the substitution

s = iω. (A.8)
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We denote the inverse Laplace Transform of the function as
f (t) =L –1{f̃ (s)}. Several useful Laplace Transforms are given in the
Table A.1. The Laplace Transform also has the convolution theorem

f ∗ g = f̃ (s)g̃(s). (A.9)

In Chapter 3 we use it to solve the Langevin equation.

A.1.2 Spatial Fourier Transform
The Fourier Transform may be generalized to functions defined in a
three-dimensional space. The transform of a function is f (r)

f̃ (q) =
∫
f (r)eiq·rdr, (A.10)

and the inverse transform

f (r) =
1

(2π)3

∫
f̃ (q)e–iq·rdq. (A.11)

In Cartesian coordinates,

f̃ (u, v,w) =
∫∫∫ ∞

–∞
f (x, y, z)e–i(xu+yv+zw)dxdydz (A.12)

and the inverse transform is

f (x, y, z) =
1

(2π)3

∫∫∫ ∞

–∞
f̃ (u, v,w)ei(ux+vy+wz)dudvdw. (A.13)

Again, using integration by parts, it is straightforward to show that
the Fourier Transform of ∇f (r) is∫

∇f (r)eiq·rdr = –iqf̃ (q). (A.14)

Likewise, the Fourier Tranform of ∇2f (r) is∫
∇2f (r)eiq·rdr = –q2 f̃ (q). (A.15)

These relationships are particularly useful for solving differential
equations when the homogeneous solutions can be neglected (such
as the long-time behavior of the Langevin equation).

Fourier Transforms are useful in the theory of spatial correlations
of colloids (as well as molecular fluids and polymers,) especially in
scattering experiments (x-ray, light and neutron).
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A.1.3 Dirac delta function
In one dimension, the Dirac delta function is defined as the derivative
of the Heaviside step function H(x)

δ(x) =
dH(x)
dx

=
{
0 x �= 0
∞ x = 0

(A.16)

The “sifting” property of the Dirac delta function is expressed as

f (0) =
∫ ∞

–∞
f (x)δ(x)dx. (A.17)

In Cartesian space, the Dirac delta function may defined such that
δ(r) = 0 if r �= 0 and δ(r) = ∞ if r = 0.

∫ ∞

–∞

∫ ∞

–∞

∫ ∞

–∞
δ(r)d3r = 1. (A.18)

A useful relationship of the delta function is that its Fourier Transform
is unity,

∫
δ(r)e–iq·rdr = 1. (A.19)

A.2 Relating Fourier and Laplace
Transforms

Consider a function V (t) that is identially zero for t < 0, for which
the Fourier Transform is

Ṽ (ω) =
∫ ∞

–∞
Ṽ (t)e–iωtdt, (A.20)

and inverse Fourier Transform

V (t) =
1
2π

∫ ∞

–∞
Ṽ (ω)eiωtdω. (A.21)

Important properties of Ṽ emerge when this is performed via
contour integration. When t < 0 (for which V (t < 0) = 0), the expo-
nential in the inverse transform becomes e–iω|t|, meaning that any ω
with positive real part grows exponentially for negative t as |ω| → ∞.
Therefore, we must close the contour around the negative imaginary
plane of ω for all t < 0, so that the countour at infinity vanishes.
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Since that integral must be identically zero for t < 0, residue calculus
requires Ṽ (ω) to be analytic on the lower-half plane.

3

3
If the Fourier Transform is defined

with the opposite sign convention, then
Ṽ (ω) must be analytic in the upper-half
plane.

Taking the Laplace Transform of the inverse Fourier Transform
will allow us to relate the two transforms.

V̂ (s) =
1
2π

∫ ∞

–∞

∫ ∞

0
Ṽ (ω)eiωt–stdtdω (A.22)

which is given by

V̂ (s) =
1
2π

∫ ∞

–∞
Ṽ (ω)
iω – s

e–iωt–st
∣∣∣∣∣
t=∞

t=0

dω. (A.23)

V̂ (s) = –
1

2π i

∫ ∞

–∞
Ṽ (ω)
ω + is

dω. (A.24)

Since Ṽ (ω) is analytic on the lower-half plane, the only singularity
in the integrand is the pole at ω = –is. Consequently, we can push the
contour down, picking up only the residue from the pole at ω = –is,
to give

V̂ (s) = Ṽ (ω → –is). (A.25)

So, the Fourier and Laplace Transforms are related for causal
functions (which are zero for t < 0).

Another way to show this is via analytic continuation. To see that,
we start once again with the definition of the Fourier Transform

Ṽ (ω) =
∫ ∞

–∞
V (t)e–iωtdt. (A.26)

Because V (t < 0) = 0, the bilateral Fourier Transform is identical to
the unilaterial Fourier Transform,

Ṽ (ω) =
∫ ∞

0
V (t)e–iωtdt. (A.27)

We now allow ω to take a complex argument, with negative imaginary
part (as required for eqn A.27 to converge)

ω = a – is (A.28)

and in fact, take a = 0, then the Fourier Transform becomes

Ṽ (ω → –is) =
∫ ∞

0
V (t)e–stdt = V̂ (s). (A.29)

Given a causal function (for which V (t < 0) = 0, the Laplace and
Fourier Transforms are related. Namely, taking the Fourier Trans-
form Ṽ (ω) and replacing ω = –is gives the Laplace Transform. This
holds for all causal functions.
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A.3 Kramers–Kronig relations
The Kramers–Kronig relations allow the real part of any Fourier-
Transformed causal function to be determined from the imaginary
part, and vice-versa. We will derive them for the complex modulus
G∗(ω), which is the Fourier Transform of the memory function m(t):

m(t) =
1
2π

∫ ∞

–∞
G∗(ω)eiωtdω (A.30)

For all t < 0, the fact that m(t) is causal requires

m(t < 0) = 0 =
1
2π

∫ ∞

–∞
G∗(ω)eiωtdω. (A.31)

This, in turn, requires that G∗(ω) be analytic in the lower-half plane.
We will now consider the integral

∫
C

G∗(ω)
ω – ω0

dω, (A.32)

We will consider a closed contour that proceeds along the real axis,
making an infinitesimally small semicircular path below the pole at
ω0, then returns to –∞ via a semicircular arc around the lower-half
plane at infinity. Because G∗(ω) is analytic in the lower-half plane,
this contour contains no singularities, and the contour integral must
be zero.

∫ ω0–ρ

–∞
G∗(ω)
ω – ω0

dω +
∫ ∞

ω0+ρ

G∗(ω)
ω – ω0

dω +
∫
ρ

G∗(ω)
ω – ω0

dω = 0, (A.33)

where the final integral is an infinitesimally small semicircle, wrapping
around the pole at ω0 in the positive direction, contributing half of that
pole’s residue. The first two integrals, in the limit ρ → 0, represent
the Cauchy Principle value of the integral, leaving

P

∫ ∞

–∞
G∗(ω)
ω – ω0

dω + iπG∗(ω0) = 0. (A.34)

Separating the real and imaginary parts of G∗(ω) = G′(ω) + iG′′(ω)
gives

P

∫ ∞

–∞
G′(ω) + iG′′(ω)

ω – ω0
dω + iπG′(ω0) – πG′′(ω0) = 0. (A.35)
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The real and imaginary parts of this equation must be satisfied
independently, thus yielding the Kramers–Kronig relations

G′(ω0) = –
1
π

P

∫ ∞

–∞
G′′(ω)
ω – ω0

dω (A.36)

G′′(ω0) =
1
π

P

∫ ∞

–∞
G′(ω)
ω – ω0

dω. (A.37)

Note that choosing the opposite sign convention for Fourier Trans-
forms, as Landau et al. (1986) do, renders G∗(ω) analytic in the
upper-half plane, so that the contour must go above ω0. This is in
the negative direction, and would reverse the signs on the right-hand
side of eqns A.36–A.37.

A.4 Vector harmonic solutions
to Stokes equations

The use of harmonic functions is particularly elegant when deriv-
ing the solution to creeping-flow equations like Stokes flow around
a sphere. Leal (2007) presents an excellent introduction to the topic,
including solutions for rotating spheres and spheres in general linear
flows. In this section, we derive the velocity and pressure fields around
a sphere translating through a quiescent fluid.

A.4.1 Harmonic functions
Harmonic functions are solutions to the differential equation

∇2ψ = 0. (A.38)

The harmonic functions consist of decaying and growing harmon-
ics. The decaying harmonics are conveniently represented by taking
higher-order derivatives of 1/r,

1
r

(A.39)

∇
(
1
r

)
→ –

xi
r3

(A.40)

∇
( x
r3

)
→ δij

r3
– 3

xixj
r5

(A.41)

∇
(

δ

r3
– 3

xx
r5

)
→ 15

xixjxk
r7

– 3
xiδjk + xjδik + xkδij

r5
(A.42)
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Written in index notation, the functions are

1
r

(A.43)

xi
r3

(A.44)

xixj
r5

–
δij

3r3
(A.45)

xixjxk
r7

–
xiδjk + xjδik + xkδij

5r5
(A.46)

or

φ–(n+1) =
(–1)n

1 · 3 · 5 · · · (2n – 1)
∂n

∂xi∂xj∂xk· · ·
(
1
r

)
, n = 0, 1, 2, ...

(A.47)
The growing harmonics are

1 (A.48)

xi (A.49)

xixj –
r2

3
δij (A.50)

xixjxk –
r2

5
xiδjk + xjδik + xkδij . (A.51)

and may be expressed in terms of the decaying harmonics by

r2n+1φ–(n+1). (A.52)

A.4.2 A sphere translating in a quiescent fluid
We seek solutions to the Stokes flow for an incompressible Newtonian
fluid

η∇2v – ∇P = 0 (A.53)

and

∇ · v = 0. (A.54)

First, we re-write the Stokes equations in a harmonic form. Taking the
divergence of Stokes equation,

∇ ·
(
η∇2v – ∇p

)
= 0 (A.55)
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where

∇2p = 0. (A.56)

Next, we write the velocity field as

v =
x
2η
p + vH (A.57)

which is a solution to eqn A.55 where vH is a harmonic function,

∇2vH = 0. (A.58)

Continuity requires that

∇ · vH = –
1
2η

(3p + x · ∇p) . (A.59)

For a velocity of the sphere V we can construct a solution begin-
ning with the pressure. The pressure is constructed from harmonic
solutions that are linear in V and x only, therefore

p = C1
V · x
r3

(A.60)

and now

v =
x
2η

(
C1

V · x
r3

)
+ vH . (A.61)

We are left to find solutions for vH . These must be decaying functions
that are linear in V and are real vectors (same tensorial rank) and
same tensorial parity. There are two terms constructed from V and
the harmonic functions

vH = C2
V
r
+C3V ·

(
xx
r5

–
δ

3r3

)
(A.62)

that satisfy the criteria.
Next, we find the constants C1, C2, and C3 in the equation

v =
x
2η

(
C1

V · x
r3

)
+C2

V
r
+C3V ·

(
xx
r5

–
δ

3r3

)
. (A.63)

First, continuity requires that

C2 =
C1

2η
. (A.64)



418 Appendix A: Useful mathematics

Now

vH =
C1

2η
V
r
+C3V ·

(
xx
r5

–
δ

3r3

)
(A.65)

and

v =
x
2η

(
C1

V · x
r3

)
+
C1

2η
V
r
+C3V ·

(
xx
r5

–
δ

3r3

)
(A.66)

which can be rearranged to

v =
x(V · x)
r3

(
C1

2η
+
C3

r2

)
+

V
r

(
C1

2η
–
C3

3r2

)
. (A.67)

Satisfying the boundary condition that v = V at x = n̂a, or
equivalently, at |x| = r = a, leads to

V = a2
n̂(V · n̂)
a3

(
C1

2η
+
C3

a2

)
+

V
a

(
C1

2η
–
C3

3a2

)
(A.68)

and the following two equations that determine the constants C1

and C3:

C1

2η
+
C3

a2
= 0 (A.69)

C1

2ηa
–
C3

3a3
= 1 (A.70)

These give us

C1 =
3ηa
2

(A.71)

C3 = –
3a3

4
(A.72)

and

v = x(V · x)
(
3
4
a
r3

–
3
4
a3

r5

)
+ V

(
3
4
a
r
+

1
4
a3

r3

)
. (A.73)

The corresponding pressure distribution is

p(x) =
3ηa2

2
V · x
r3

, (A.74)

which appear as eqns 2.70 and 2.71 in Section 2.5.
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A.5 Dynamics of an oscillating particle
The equation governing the motion of an optically trapped sphere
(eqn 9.38) is

ζ ẋ + κtx = κtxt (A.75)

where xt = A cosωt. Here, we show that the general solution is

x(t) = D(ω)ei[ωt–δ(ω)]. (A.76)

We rewrite the equation of motion,

ζ ẋ + κtx = κtAeiωt (A.77)

recognizing that x(t) is the real part of the solution.
We assume the solution x = D′eiωt, which upon substituting into

eqn A.77, gives

D′(ω) = κtA
κt + iωζ

. (A.78)

In polar coordinates,

κt + iωζ =
√
κ2t + ω2ζ 2eiδ (A.79)

where

tan δ = ωζ/κt (A.80)

so

D′(ω) = κtA√
κ2t + ω2ζ 2

e–iδ . (A.81)

Thus, the solution is of the form

x(t) = D(ω)ei[ωt–δ(ω)] (A.82)

with

D(ω) =
κtA√

κ2t + ω2ζ 2
. (A.83)

Taking the real part, we find

x(t) = D(ω) cos[ωt – δ(ω)]. (A.84)






