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2.1 Introduction

All microrheology experiments measure the resistance of a probe par-
ticle forced to move within a material, whether that probe is forced
externally or simply allowed to fluctuate thermally. For example, the
viscosity of a Newtonian liquid could be measured microrheologically,
using a spherical colloid as a probe. In an active microrheology exper-
iment, a colloid of radius a is driven externally with a specified force
F (e.g., magnetic, optical, or gravitational), and moves with a velocity
V that is measured. The rheology of the liquid (i.e., the viscosity η)
may be extracted from Stokes’ classic formula for the drag on a sphere
moving through a viscous fluid,

ζ =
F
V

= 6πηa, (2.1)

which will be computed in Section 2.5.2.
In passive microrheology experiments, on the other hand, the

position of a thermally-fluctuating probe is tracked and analyzed
to determine its diffusivity, which Einstein (1906) and Sutherland
(1905) related to the hydrodynamic resistance ζ according to

D =
kBT
ζ

=
kBT
6πηa

. (2.2)

The interpretation of such experiments in purely viscous liquids is
deceptively straightforward, as they rely upon hydrodynamic cal-
culations by Stokes, Einstein, and Sutherland that are now taken
for granted. To determine rheological properties (e.g., G∗) from
the probe resistance ζ in more complex materials, however, solu-
tions to the analogous continuum-mechanics problem are required.
Herein lies the difficulty: One must know the material’s rheological
properties in order to even pose the continuum-mechanical problem
that must be solved, yet the solution of that problem is required to
determine the material rheology! Fortunately, the Correspondence
Principle (Section 2.4) cuts this Gordian Knot for linear response
measurements. No such simplification occurs for nonlinear mi-
crorheology experiments, however, complicating their interpretation
significantly.

Microrheology. Eric M. Furst and Todd M. Squires, Oxford University Press (2017).
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In this chapter, we briefly derive and discuss the fundamental
equations governing continuum materials as they deform, and will
specifically focus on the mechanics of probe particles moving within
these materials.

2.2 The mechanics of deformable
continua

Many readers are no doubt familiar with the Navier–Stokes equations,
which govern the flow of viscous liquids. Some will also be familiar
with the equations of motion for elastic solids. Both require the con-
tinuum hypothesis, which relies upon fictitious “material elements”
that must satisfy two competing demands. Material elements must
be large enough, and contain enough micro-structural elements (here
atoms or molecules) to behave as the macro-scale material does. At
the same time, material elements must be significantly smaller than
any length scale associated with a flow or deformation field, so that
gradients can be well-resolved.

The continuum approximation is easily satisfied with simple ma-
terials like water, glass, and steel on all but molecular length scales,

continuum limit satisfied non-continuum

a

ξ ξ
Fig. 2.1 The continuum approxi-
mation is satisfied when probe parti-
cles are larger than the characteristic
length scale ξ of the material. In
materials like suspensions, the probe
particle must be much larger than the
dispersed particles. The arrow points
to a probe that is smaller than the
surrounding bath particles.
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yet can be violated in microrheology of soft materials. For exam-
ple, a grape embedded in Jello sees its material environment as
a continuum: When forced, the grape deforms the surrounding
Jello as a continuum. A sugar molecule or salt ion, however, is far
smaller than the pores within the gel network comprising the Jello,
and so diffuses through the Jello as though it were water. If this
were a microrheology experiment, grape probes would (correctly)
determine Jello to be a viscoelastic solid with the same G∗(ω) meas-
ured in a rheometer, whereas experiments using dye molecules as
probes would reveal Jello to be a viscous liquid. Each experiment is
meaningful in its own way—the grape correctly identifies the macro-
scopic rheology of Jello, whereas the dye reveals information about
the mesostructure that would be inaccessible to macrorheometry.
This example highlights both opportunities and challenges for the
microrheologist.

depletion

accumulation

patchy

Fig. 2.2 A second class of non-
continuum effects occur in probe mi-
crorheology when the material struc-
ture is affected by the probe, in which
case depleted layers, accumulation, or
patchy interactions can arise.

Naturally, if a soft material has microstructural elements on the
order of length scale ξ , then probe particles must exceed this dimen-
sion for the continuum approximation to hold. If the material contains
dispersed polymers or particles, then those elements must be smaller
than the probe. Both situations are represented in Fig. 2.1. An entan-
gled biopolymer network, for instance, should have a mesh size ξ � a.
Dispersed protein solutions, for which the individual molecules are on
the order of tens of nanometers in size, naturally satisfy the continuum
limit. But the microstructures in some gelators and rheology thicken-
ers, including peptides, microgel particles, or clays, can often exceed
normal probe dimensions of a few micrometers (Lu and Solomon,
2002; Oppong and de Bruyn, 2007; Savin and Doyle, 2007a; Rich
et al., 2011b). In Section 3.10, we discuss methods for verifying that
the continuum approximation of probe microrheology is being met
in an experiment. A second non-continuum effect occurs when the
probe particle changes the local microstructure of the material. Mate-
rial can be depleted near the particle, bunched up around it, or take on
a more patchy structure, as we depict in Fig. 2.2. Later, we will discuss
methods for detecting local heterogeneity, including manipulating the
probe surface chemistry (Section 3.10), two-point microrheology ex-
periments and the probe mechanics in locally heterogeneous materials
(Section 4.11).

2.2.1 The Cauchy Stress Equation: F =Ma
for continuum materials

When a material is treated as a continuum, rather than as some
discrete object, Newton’s equations must be “smeared out”, with
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masses and forces distributed on a per-volume basis. The Cauchy
stress equation,

1

1
Throughout this book, we will use

lower-case variables u and v = u̇ to repre-
sent displacement and velocity fields, respec-
tively, within a continuum material. We will
use upper-case variables U and V to denote
the displacement and velocity of a particle
within the material.

ρ
∂2u
∂t2

= ∇ · σ + fb, (2.3)

represents a continuum version of F =Ma, which must be obeyed at
each point r within the material. Note that ρ is the material density
and u(r) represents the displacement of the material element at r.

Three forces (per unit volume) appear in Eqn 2.3. The first term
ρü describes the inertial force density that arises at each point r within
the material due to the unsteady acceleration of the material element.
The third term, fb, represents a body force that is exerted through-
out the volume of each material element. Common examples of body
forces include gravitational, electrical, magnetic, and van der Waals
forces. Unless otherwise noted, however, body forces will play little or
no role in our discussion, and so will be omitted.

In Section 2.3, each material element accelerates due to stresses σ

exerted on its surfaces by neighboring elements. The stress σ within
a continuum material has units [force/area], and is a tensor quantity:
The force t that is exerted per unit area of any particular surface de-
pends on the orientation of that surface. The stress vector

2

2
Also called the traction.

exerted
on a surface with outward-directed normal vector n̂ (Fig. 2.3) is
given by

t = σ · n̂, (2.4)

f

x

y
z

n

dA

t

t

Fig. 2.3 A force f exerted on an area
segment dA with outward unit nor-
mal vector n̂ defines the stress vectors
parallel t‖ and perpendicular t⊥ to
the surface.

and has components both normal to the surface (like pressure) and
tangential to the surface (like viscous stresses). For example, the stress
on a material located beneath z = 0, with outer normal n̂ = ẑ, is
given by

t = σxzx̂ + σyzŷ + σzzẑ, (2.5)

where, e.g., σxz = x̂ · σ · ẑ, and so on. σxz and σyz are shear stresses,
and σzz is a normal stress.

The convective (nonlinear) derivative ρ(u̇ · ∇)u̇ has been omit-
ted from the left-hand side of eqn (2.3). As is familiar from fluid
mechanics, two phenomena give rise to inertial forces. The first is
the unsteady inertia ρü that appears in (2.3). The other source arises
even under steady flows (i.e., when ∂v/∂t = ü = 0), when fluid el-
ements are accelerated as they move along streamlines. The second
(nonlinear) inertia gives rise to turbulence, whereas the first (linear)
inertia gives rise to transverse waves. In microrheology, the unsteady
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inertia can be significant at high frequencies, but the convective inertia
is generally not.

2.2.2 Linear-constitutive relations

The Cauchy Stress Equation (2.3) is exceedingly general, and gov-
erns the dynamics of all continuummaterials—whether liquids, solids,
gels, emulsions, solutions, powders, or foams. While powerful, it sim-
ply accounts for momentum conservation at every point in a material.
To derive equations of motion for a particular material, we must know
how the stress σ is related to the material’s deformations: e.g., strain
(for elastic materials), strain-rate (for viscous materials), strain-rate
history (for viscoelastic materials), metastable states (for powders and
granular materials), and so on. These are constitutive relations and
are specific to each material. Broad classes of constitutive relations
distinguish between different classes of materials (e.g., liquids versus
solids), and material parameters within each constitutive relation dis-
tinguish between materials within each class (e.g., viscosity for liquids,
shear and bulk moduli for solids, and coefficients of restitution for
granular materials).

The constitutive relation for a viscous liquid is particularly sim-
ple, and has proven remarkably successful. Other materials are not so
simple, with stress tensors that are nonlinear functions of the strain
and rate-of-strain tensors ε and ε̇, and of the deformation history
of the material. Examples of rate-dependent responses include shear
thinning in shampoo, and shear thickening in concentrated suspen-
sions of cornstarch. Examples of strain-dependent responses include
strain hardening: A rubber band pulls back gently when stretched
slightly, but stiffens when stretched more. Some materials yield, like
mayonnaise and toothpaste: They sit like elastic solids under gravita-
tional stresses, yet flow like liquids under sufficiently large strains or
stresses. Moreover, the stress in a material can depend on the type
of deformation experienced by the material. Polymer solutions gener-
ally shear thin, such that they feel slippery, but extension thicken
such that threads are hard to break. The constitutive relations for even
simple elastic solids are generally only linear in the small-strain limits:
Deform any solid significantly, and its response will change (e.g., via
ductile plasticity, or brittle fracture).

2.2.3 Constitutive relations in the linear
response limit

Considerable simplifications arise in the linear response limit, which
is found when deformations are so small or slow that the stress is
simply proportional to the strain (or strain rate).
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Viscous, or Newtonian, Liquids

Molecular liquids and gasses almost always operate in the linear re-
sponse limit, as they are inherently disordered in a way that is not
strongly disrupted by flow, except under exceptional circumstances,
like appreciable Mach-number flows close to the speed of sound.
When the fluids can be considered incompressible, ∇ · v = 0 must
be imposed to conserve mass, and the stress is then given by

σ = –pδ + 2ηε̇, (2.6)

where δ is the identity tensor and

ε̇ =
1
2

(
∇u̇ + (∇u̇)T

)
(2.7)

is the rate of deformation tensor. Equivalently, (2.7) can be expressed
using index notation,

ε̇ij =
1
2

(
∂ u̇i
∂xj

+
∂ u̇j
∂xi

)
, (2.8)

and

δij = 1 for i = j (2.9)

δij = 0 for i �= j. (2.10)

The stress in a viscous fluid depends only on the rate of deformation ε̇

at a given time, rather than the total deformation ε or any past history
of deformation.

Compressible elastic solids

We will focus on elastic solids that are isotropic, as is appropriate
for many soft materials. The conceptual differences that arise when
treating anisotropic materials are relatively few, yet the mathemati-
cal complications are substantial, and would unnecessarily confuse
the development of the core principles of microrheology presented
here.

3

3
Anisotropic-elastic solids (e.g., crystals)

generally require a fourth-rank stiffness ten-
sor C for their description, σ = C : ε, or
Tij = Cijklεkl .

While viscous fluids are almost always incompressible, elastic
materials often have a finite compressibility.

Two independent moduli are required to describe stress in iso-
tropic elastic media—one for shear, and for compression. One way
to write the stress in a compressible media is

σ = λ(∇ · u)δ + 2Gε, (2.11)
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wherein λ is Lamé’s first coefficient, which involves material com-
pressibility, and G is the standard shear modulus. Although this form
of the stress tensor is the simplest to write, it is not necessarily the
clearest form conceptually, in terms of differentiating between shear
and compressive properties. To see this, note that the trace of ε is
∇ · u, which is not necessarily zero in compressible media. Conse-
quently, the stress arising from compressive deformations includes
contributions from both the shear modulus G and λ. Specifically, the
(isotropic) stress in response to a pure compressive strain is given by

σii = (3λ + 2G)∇ · u. (2.12)

Thus, it is often convenient to explicitly define a bulk modulus K ,

K = λ +
2
3
G, (2.13)

so that

σii = 3K∇ · u. (2.14)

When written in terms of the bulk and shear moduli K and G,
the stress tensor explicitly separates into two components: One as-
sociated with volume-preserving deformations, and the other with
compressive deformations:

σ = K(∇ · u)δ + 2G
(

ε –
1
3
(∇ · u)δ

)
. (2.15)

Various choices are thus available to describe isotropic, compress-
ible media. We have seen three: The shear modulus G, the bulk
modulus K , and Lamé’s first coefficient λ. Another common choice
is the Poisson ratio ν, which gives the ratio of how much a material
expands in a direction transverse to the direction in which it is com-
pressed. An incompressible material, for example, has ν = 1/2: If
compressed with a strain � in the z-direction, it must expand with
strains �/2 in the x and y directions to preserve volume. The Poisson
ratio can be derived from the shear and bulk moduli according to

ν =
3K – 2G
2(3K +G)

, (2.16)

giving a stress tensor of the form

σ = G
[

2ν
1 – 2ν

(∇ · u)δ + 2ε

]
. (2.17)
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The final two moduli in common use are Young’s modulus E, which
relates uniaxial strain (stretching) to unaxial stress, and the P-wave
or longitudinal modulus, which describes axial stress in response to
strains that are purely axial (e.g., as occurs in pressure (P) waves).

To summarize, two independent moduli are required to describe
the stress-strain relationship in compressible, isotropic media. There
are six such moduli in common use, every one of which can be
expressed in terms of two others, giving 15 superficially distinct ex-
pressions for σ . Any of these expressions (i.e., any pair of moduli)
can be used to pose and solve a given elasticity problem. Which pair
is best depends on the natural geometry of the problem and to a large
extent on one’s taste.

In rheology and microrheology, the shear modulus G is almost
always the property of interest, and so will be retained throughout
this text. Various choices are often chosen for the second modulus—
usually λ, K or ν. We will generally present results in terms of G
and K .

Incompressible elastic solids

Some elastic materials (e.g., Jello) are much harder to compress than
to shear, and can often be approximated as incompressible. This occurs
when the bulk modulus K is much larger than the shear modulus G,
so that deformations with non-zero divergence ∇ ·u would give rise to
stresses K∇ ·u that are enormous compared to shear stresses ∼ G∇u.

Approximating a material as incompressible is mathematically sub-
tle, requiring the limit K → ∞ to be taken while simultaneously
imposing ∇ · u → 0. It is not immediately obvious whether the com-
pressive stress –K∇ ·u should be infinity, or zero, or something finite.
The standard approach, familiar in fluid mechanics, is to define a
pressure p = –K(∇ ·u) as a separate field whose function is to enforce
the incompressibility condition ∇ · u = 0, which is imposed as a sep-
arate equation. In this case, the linear response constitutive equations
for an isotropic, incompressible elastic solid are given by

σ = –pδ + 2Gε. (2.18)

∇ · u = Tr ε = 0. (2.19)

Notably, this constitutive relation is identical in form to that for an in-
compressible viscous liquid (eqn 2.6), but depends on strain ε rather
than rate of strain ε̇.

Incompressible, isotropic viscoelastic materials

Finally, we turn to linear viscoelastic (LVE) materials, which exhibit
both viscous and elastic responses to deformations. LVE materials
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have frequency-dependent moduli, reflecting the relaxation of differ-
ent structural modes that occur at different time scales. We will focus
on incompressible LVE materials, since most soft materials consist
of some meso-structure suspended in a viscous liquid, and viscous
liquids are essentially always treated as incompressible.

When an LVE material is subjected to a gentle oscillatory
deformation

ε(t;ω) = ε0eiωt, (2.20)

at frequency ω, the resulting stress,

σ (t;ω) = σ 0ei(ωt+δ), (2.21)

need not be in-phase with the strain. Instead, the stress is given by

σ 0(ω) = –p0(ω)δ +G∗(ω)ε0(ω), (2.22)

where

G∗(ω) = G0eiδ (2.23)

is the complex-storage modulus, and δ is the phase angle between
shear stress and shear strain. The phase angle δ is zero for elastic
solids, where stress and strain are in phase, and is δ = π/2 for viscous
liquids, for which the stress is in-phase with the strain rate.

4

4
Note that some authors use e–iωt rather

than eiωt in defining viscoelastic materials.
Both are equivalent, although it is com-
mon for confusion and errors to arise when
results from both conventions are used.

Under linear response conditions, the stress tensor σ (t) in a linear
viscoelastic liquid at any time t due to a general (but gentle) strain
history,

ε(t) =
1
2π

∫ ∞

–∞
ε̃(ω)eiωtdω, (2.24)

is then simply given by superposing the responses at each frequency,
with the appropriate amplitude:

σ (t) =
1
2π

∫ ∞

–∞
[
–p̃(ω)δ +G∗(ω)ε̃(ω)

]
eiωtdω, (2.25)

giving

σ (t) = –p(t)δ +
∫ t

–∞
m(t – t′)ε(t′)dt′. (2.26)

Here m(t) is the memory function, defined by

m(t) =
1
2π

∫ ∞

–∞
G∗(ω)eiωtdω. (2.27)

Notably, eqn 2.27 reveals that the stress at time t depends upon the
strain history at previous times t′ < t, weighted by the memory
function m(t).
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2.3 Equations of motion for isotropic
continua

It is now straightforward to derive equations of motion for various
materials by simply evaluating the Cauchy Stress equation (2.3) using
the relevant constitutive equation for each material.

We start with incompressible materials, which obey

∇ · u̇ = ∇ · u = 0. (2.28)

The momentum equations differ from material to material, and are
given by

ρü = –∇p + η∇2u̇ (2.29)

for incompressible viscous liquids,

ρü = –∇p +G∇2u (2.30)

for isotropic, incompressible elastic solids, and

ρü = –∇p +
∫ t

–∞
m(t – t′)∇2u(t′)dt′ (2.31)

for isotropic, incompressible viscoelastic media.
Equations (2.29) and (2.30) for (incompressible) viscous liquids

and elastic solids appear quite similar, differing by one mere time
derivative. The momentum equation for an incompressible, isotropic-
viscoelastic material (eqn 2.31) at first glance appears quite different.
However, computing the Fourier time-transforms of eqns 2.29–2.31
yields

–ρω2ũ = –∇p̃ + iωη∇2ũ (2.32)

–ρω2ũ = –∇p̃ +G∇2ũ (2.33)

–ρω2ũ = –∇p̃ +G∗(ω)∇2ũ. (2.34)

Remarkably, the momentum equations for viscous fluids, elas-
tic solids, and viscoelastic materials are essentially identical. These
equations differ only in their scalar shear moduli, which are purely
imaginary (iωη) for liquids (eqn 2.32), purely real (G) for solids
(eqn 2.33), and generally complex G∗(ω) for viscoelastic materials
(eqn 2.34). Moreover, stress tensors for all three transform similarly:

σ̃ = –p̃(ω)δ +G∗(ω)ε̃, (2.35)
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whereG∗(ω) can now be viewed as a general shear modulus:G∗(ω) =
iωη for a purely viscous liquid, and G∗(ω) = G for a purely elastic
solid.

These equations can equally well be expressed in terms of velocity
fields ṽ = iωũ, in which case eqn 2.34 becomes

iρωṽ = –∇p̃ + η∗(ω)∇2ṽ. (2.36)

When writing equations of motion in terms of velocity fields ṽ,
rather than displacement fields ũ, it is often sensible to introduce the
complex viscosity

η∗(ω) ≡ G∗(ω)
iω

, (2.37)

rather than the shear modulus G∗(ω). Both approaches are valid,
and are entirely equivalent, although G∗(ω) can can only be de-
termined from η∗(ω) to within a single, additive constant, typically
G′(ω → 0).

Analogous results hold when the Laplace transform is employed,
rather than the Fourier Transform, although subtleties exist regard-
ing initial conditions, since Laplace Transforms single out a particular
t = 0. For simplicity’s sake, we will assume homogeneous initial condi-
tions: u(t ≤ 0) = u̇(t ≤ 0) = 0. In that case, the Laplace-Transformed
equations of motion for viscous fluids, elastic solids, and viscoelastic
media become

ρs2û = –∇p̂ + sη∇2û (2.38)

ρs2û = –∇p̂ +G∇2û (2.39)

ρs2û = –∇p̂ + Ĝ(s)∇2û. (2.40)

or, using velocity rather than displacement fields,

ρsv̂ = –∇p̂ + η̂(s)∇2v̂, (2.41)

where

η̂(s) = Ĝ(s)/s (2.42)

is the Laplace-Transformed complex viscosity.
Equations (2.32–2.41) have profound implications for microrhe-

ology, as developed in Section 2.4.
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2.4 Correspondence Principle

A remarkable feature of the time-transformed equations of motion for
isotropic and incompressible materials—given by eqns 2.32–2.34—is
that they are essentially identical, no matter whether the material is a
viscous liquid, an elastic solid, or more generally viscoelastic. All such
materials obey the same time-transformed equations of motion, with
a shear modulus G∗(ω) that would be purely imaginary for a viscous
liquid, purely real for an elastic solid, or complex for a viscoelastic
material.

This observation forms the basis for the Correspondence Prin-
ciple (Pipkin, 1986), which provides a simple way to solve linear
viscoelastic flow or displacement problems, by simply adapting a
solution to a corresponding Stokes flow or elastisity problem. Its
traditional formulation holds for viscoelastic materials that

• can be treated as continuum;

• are spatially homogeneous;

• are spatially isotropic;

• can be approximated as incompressible; and

• are deformed gently enough that the linear response approach
remains valid.

Correpondence Principle: Time-
transformed LVE flows can be obtained
from analogous solutions to the Stokes flow
or elasticity equations, by replacing the
Newtonian viscosity η is replaced by the
complex viscosity η∗(ω), or elastic shear
modulus G by the complex shear modulus
G∗(ω).

The time-transformed equations of motion for LVE materials
(eqn 2.34) are identical to the time-transformed Stokes equations
(eqn 2.32) for viscous flow when η is replaced by η∗(ω). One can
therefore take a time-transformed solution vStokes to a Stokes flow
problem with a given geometry, and replace the Stokes viscosity η
with a complex viscosity η∗(ω), to obtain a valid time-transformed
solution to the corresponding problem for an LVE material with
complex viscosity η∗(ω),

ṽLVE(ω) = ṽStokes(ω)|η→η∗(ω) , (2.43)

so long as the time-transformed boundary conditions of the LVE
problem are also identical to those of the time-transformed Stokes
flow problem. Similarly, one can take a time-transformed displace-
ment field uElasticity computed for an incompressible solid, and replace
the shear modulus G with the complex shear modulus G∗(ω), to
obtain a valid time-transformed LVE displacement field ũLVE(ω),

ũLVE(ω) = ũElasticity(ω)
∣∣
G→G∗(ω) . (2.44)

Analogous results hold for Laplace-Transformed fields.
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Consider the example of a plate at z = 0 executing transverse
oscillations of amplitude U0 and frequency ω. The plate excites elas-
tic shear waves that propagate through an elastic medium, giving a
displacement field

ux(z) = Re
(
U0eiω(t–z/c)

)
= U0 cos

[
ω
(z
c
– t
)]

, (2.45)

where

c =
√
G/ρ (2.46)

is the transverse wave speed in the medium. An alternative form,

ux(z) = Re
(
U0ei(ωt–qTz)

)
= U0 cos [qTz – ωt] , (2.47)

highlights the transverse-wave number,

qT =
2π
λT

=

√
ρω2

G
. (2.48)

Direct substitution confirms that eqns 2.45 and 2.47 obey eqn 2.33.
The analogous problem for a viscous fluid—where a plate at z =

0 oscillates in the x-direction with amplitude U0 and frequency ω—
can be obtained directly from eqn 2.45 using the Correspondence
Principle. Replacing the elastic shear modulus G in eqn 2.47 with the
modulus for a viscous fluid (G → iωη) gives

– iqTz → –iz

√
ρω2

iωη
= ±(i + 1)

z
λV

, (2.49)

where we have used
√
i = ±(1 + i)/

√
2, and where

λV =

√
2η
ρω

=

√
2ν
ω

(2.50)

is the oscillatory boundary layer thickness. The displacement field
for a Stokes flow, obtained from eqn 2.45 using the Correspondence
Principle, is then

ux(z) → Re
[
U0 exp

(
iωt ± (i + 1)

z
λV

)]
. (2.51)
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Choosing the negative root ensures the displacement field decays as
z → ∞, giving

ux(z) = U0 cos
(
ωt –

z
λV

)
e–z/λV . (2.52)

The flow field v follows from the displacement field u via v = iωu,
giving the expected oscillatory boundary layer velocity field

vx(z) = V0 cos
(
ωt –

z
λV

)
e–z/λV (2.53)

in terms of the velocity V0 of the oscillating plate.
Solutions for shear waves in LVE materials may be obtained

similarly, using a complex modulus,

G∗(ω) = G0eiδ , (2.54)

giving

ux(z) = U0 cos
(
ωt – q∗Tz

)
e–z/λ

∗
V , (2.55)

with wavenumber q∗T ,

q∗T =

√
ρω2

G0
cos

δ

2
(2.56)

x

vz (x)

δ = 0

δ = π/6

δ = π/2

λV

λT

Fig. 2.4 Shear waves near an oscil-
lating plate for viscous, elastic, and
viscoelastic materials.

and attenuation length λ∗
V ,

λ∗
V =

√
G0

ρω2

1

sin δ
2

. (2.57)

Equations 2.55–2.57 recover elastic shear waves (eqn 2.45) in the
δ → 0 limit appropriate for pure elastic materials, and viscous shear
waves (eqns 2.50 and 2.52) in the δ → π/2 limit relevant for vis-
cous fluids. For all linear viscoelastic materials (with phase angles
0 ≤ δ < π/2), the thickness λ∗

V of the oscillatory-boundary layer
exceeds the wavelength λV of the oscillatory shear waves, becoming
equal only in the purely viscous limit δ = π/2. These shear waves are
depicted in Fig. 2.4.
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2.5 Particle motion

Earlier, we posed an apparent conundrum central to microrheol-
ogy: In order to infer the material rheology from measurements of
a probe’s response, one must solve a continuum-mechanics prob-
lem. In order to even pose this continuum-mechanical problem in
the first place, however, one must know the material rheology! As we
shall shortly see the Correspondence Principle circumvents this diffi-
culty. So long as material’s constitutive equations are consistent with
the Correspondence Principle, one can simply take solutions to the
viscous-flow (or elastic displacement) field around the force probe,
and replace the Newtonian viscosity with the corresponding complex
viscosity appropriate for the material. The Correspondence Principle,
then, paves the way for the widespread success of microrheology.

We therefore turn to the continuum-mechanics of particle motion.

2.5.1 Mobility and resistance

We start by discussing the hydrodynamic resistance ζ of a probe
forced to move within a liquid, as well as its mobility b. In a Newto-
nian liquid, the mobility and resistance are linear response properties.
The resistance ζ gives the drag force Fd on a probe translating with
velocity V through the liquid, whereas the mobility b gives the probe
velocity V in response to a driving force F:

Fd = –ζV, V = bF. (2.58)

We have assumed a spatially isotropic probe, for which ζ and b are
scalar quantities; more generally, mobility and resistance tensors are
required for anisotropic particles, as explored in Section 2.8.

The mobility and resistance of probes take more complex forms in
viscoelastic media,

Fd(t) = –
∫ t

–∞
ζ (t – t′)V(t′)dt′ (2.59)

V(t) =
∫ t

–∞
b(t – t′)F(t′)dt′. (2.60)

meaning that the velocity of a probe depends on its past force history,
and vice versa. The mobility and resistance are thus not simple in-
verses of each other, as they are for Newtonian fluids (cf. eqn 2.58).
Their time-transformed versions, however, are:

F̃d(ω) = –ζ ∗(ω)Ṽ(ω) (2.61)

Ṽ(ω) = b∗(ω)F̃(ω), (2.62)
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from which it follows that, for Fd = –F,

ζ ∗(ω)b∗(ω) = 1. (2.63)

These equations are central to understanding the response of probe
particles to applied or inherent (thermal) forces. On a practical level,
it is often easier to pose the resistance problem than the mobility prob-
lem if one needs to compute these quantities (e.g., for a complex probe
shape, or in a complex geometry). This is because the resistance prob-
lem involves a standard boundary condition, in which the velocity is
specified on every point of the probe surface. By contrast, the mobility
problem imposes the total force (and torque) on the particle, without
specifying how the stress is distributed over the probe surface.

While it is more natural to solve the resistance problem, and then
invert the resistance to obtain the mobility, this inversion can be
subtle. As discussed in Sections 2.6.2 and 2.8, anisotropic and multi-
particle systems generally have tensor mobilities and resistances, for
which one cannot simply invert one component (e.g., ζxx) of the
resistance tensor to obtain that component (bxx) of the mobility ten-
sor. Rather, the full-resistance tensor must be inverted to obtain the
mobility tensor.

Lastly, in keeping with the concept of the Correspondence Princi-
ple, the mobility and resistance relations between the force on a probe
and its velocity may alternately be expressed in the form of a spring
constant (possibly complex) that relates the displacement to the force:

F(t) = –
∫ t

–∞
κ(t – t′)U(t′)dt′, (2.64)

which when Fourier transformed becomes

F̃(ω) = –κ̃∗(ω)Ũ(ω). (2.65)

Since F̃ = iωŨ, the complex spring constant is related to the complex
resistance via

κ̃∗(ω) = iωζ̃ ∗(ω). (2.66)

2.5.2 The Stokes resistance and mobility
of a translating sphere

We start with the simplest, most well-known, and most important
example—the Stokes resistance of a solid sphere of radius a, centered
at r = 0 and translating with velocity V0 in a fluid of viscosity η. The
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fluid is set into motion, with velocity, pressure, and stress fields given
by {v, p, σ}. The Stokes equations 2.29 are solved subject to no-slip
boundary conditions on the sphere surface (v = V0 for r = a) and
no-disturbance far away (v → 0 as r → ∞). The stream function,

ψ(r, θ) =
(
3r
2a

–
a
2r

)
a2 sin2 θ

2
V0, (2.67)

gives a compact form of the solution as a function of position r around
the translating sphere, from which the velocity fields are obtained via

vr =
1

r2 sin θ
∂�

∂θ
(2.68)

vθ = –
1

r sin θ
∂�

∂r
. (2.69)

The velocity and pressure fields around a sphere translating with
velocity V0 are then given by

5

5
In Appendix A.4 we use a vector-

harmonic functions to arrive at the same
solution.

v(r) =
3a
4r

(
V0 + (V0 · r̂)r̂) + a3

4r3
(
V0 – 3(V0 · r̂)r̂) (2.70)

p(r) =
3η
2a

a2

r2
V0 · r̂ (2.71)

F

Fig. 2.5 Flow generated by a trans-
lating sphere. In a fixed reference
frame, the fluid flow around a sphere
consists of a Stokeslet (Fig. 2.7) and
Source Dipole (Fig. 2.8). At long dis-
tances, the Stokeslet flow field dom-
inates, which decays with distance
like r–1.

and stress tensor

σ (r) = –
9ηa
2r2

V0 · r̂r̂r̂ + 3ηa3

2r4
(
5V0 · r̂r̂r̂ – r̂V0 –V0r̂ –V0 · r̂δ) (2.72)

where

r̂ =
r
r

(2.73)

is the unit vector in the radial direction. The velocity field in a fixed-
reference frame and in the reference frame of the translating probe are
shown in Fig. 2.5 and Fig. 2.6, respectively. The fixed-reference frame
will be useful later when we consider the interactions between neigh-
boring particles, while the sphere’s reference frame provides a sense
of the mix of deformation modes (e.g., shear versus extension) and
Lagrangian unsteadiness material elements experience as they move
around it.



Particle motion 59

V

Fig. 2.6 Streamlines in the reference
frame of the translating sphere high-
light the material deformation.

Finally, we compute the force F0 exerted by the fluid on the
particle via

F0 =
∫
r=a

r̂ · σdA = 6πηaV0, (2.74)

revealing the hydrodynamic resistance ζ sphereT of a translating sphere
to be given by

ζ
sphere
T = 6πηa. (2.75)

The mobility bsphereT of a translating sphere can now be easily deter-

mined by simply inverting ζ sphereT (eqn 2.75),

bsphereT =
1

6πηa
. (2.76)

The translation of viscous liquid drops and gas bubbles can be
treated in a similar fashion, with the no-slip boundary condition
replaced by the relevant stress-matching boundary condition. The
translation of a liquid drop is described by the Hadamard–Rybczinski
formula,

ζ
drop
T = 4πηa

3λη + 2
2(λη + 1)

(2.77)

where λη = ηd/η is the viscosity ratio of the drop to that of the sur-
rounding medium. As λη → ∞, the Stokes resistance of a rigid sphere
is recovered,

ζ (λη → ∞) → 6πηa. (2.78)

Fig. 2.7 Stokeslet flow field. The
fluid flow established by a point
force, called a Stokeslet, decays
like 1/r.

The limit λη → 0, corresponding to an inviscid bubble, gives a
resistance

ζ (λη → ∞) → 4πηa (2.79)

that is lower than for the rigid sphere, but only by 50%.
The fluid velocity field (eqn 2.70) naturally splits into two distinct

components: The first term decays slowly (∼ r–1) and represents the
flow due to a point force, or Stokeslet, at the origin. The Stokeslet
flow gives rise to the slowest-decaying (r–2) first term in eqn 2.72, and
is entirely responsible for the drag on the sphere, as shown in Fig. 2.7
and Fig. 2.8. The second term in the flow field decays more quickly
(∼ r–3) and represents a potential dipole, or “point source” dipole.
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The source dipole flow is irrotational, and gives rise to the second
(∼ r–4) term in the stress tensor (2.72) and does not contribute to the
drag. Equation 2.70 can be written

v(r) = 6πηa

(
GSt(r) –

a2

3
GPD(r)

)
· V0, (2.80)

=

(
GSt(r) –

a2

3
GPD(r)

)
· F0, (2.81)

Fig. 2.8 Potential dipole field. The
fluid flow established by a point-
source dipole decays like 1/r3.

where GSt(r) and GPD(r) represent the Green’s functions for a point
force and a (potential) source dipole, respectively, located at the
origin:

GSt(r) =
1

8πη

(
δ

r
+

r̂r̂
r

)
, (2.82)

GPD(r) =
1

8πη

(
–

δ

r3
+ 3

r̂r̂
r3

)
≡ 1

8πη
∇∇

(
1
r

)
. (2.83)

The Stokeslet tensorGSt is also known as theOseen tensor. The flow
field at large distances r from the probe is dominated by the Stokeslet
flow, which depends only on the total force, rather than the size (or
even shape) of the particle. The second (potential) component decays
more quickly, and is shape-dependent.

The flow around a translating sphere is special in that exactly
two terms (GSt and GPD) are required for its description. An in-
finite number of terms (comprised of all multipoles of point forces
and sources) are generally required to describe the flow around more
general shapes. Several key features are preserved even for complex-
shaped probes, however. The Stokeslet flow GSt depends only upon
the force on the probe, and represents the only component of the flow
that decays with distance like r–1.

The higher-order multipoles depend on the detailed probe shape,
and are essential in determing the self-mobility and self-resistance of
the probe. Hydrodynamic interactions between well-separated par-
ticles, on the other hand, are dominated by the slowest-decaying
components of the flow, as discussed in Section 2.6. The “coupling
mobilities” between particles, then, are dominated by the Stokeslet
flow. This motivates two-point microrheology techniques (see Section
4.11), which measure the cross-correlated fluctuations of two differ-
ent probes. These cross correlations are proportional to the coupling
mobility (which gives the velocity of one particle in response to a
force on the other particle), which depends almost exclusively on the
Stokeslet term, and is therefore essentially independent of the shape
of each probe.
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2.5.3 Stokes resistance of a probe undergoing
oscillatory translations

Thus far, we have examined steady probe motion. Diffusing parti-
cles, by contrast, execute stochastic, fluctuating motions, which can
be decomposed (through the Fourier Transform) to oscillatory mo-
tions at every frequency. Oscillations at sufficiently low frequencies
are well-described by the steady Stokes flow solutions computed (i.e.,
the quasi-steady approximation). Above a characteristic inertial fre-
quency, however, the response of a sphere to an oscillatory force
changes qualitatively, significantly impacting the interpretation of a
microrheology experiment. One thus needs to know the relevant fre-
quency where fluid inertia (and thus transient flow behavior) becomes
important, and how this frequency scales with probe size and material
properties.

We now compute the frequency-dependent resistance to oscilla-
tory translations. To demonstrate the impact that fluid inertia can
have on probe motion, we consider a sphere that oscillates with ve-
locity V0eiωt, such that the fluid velocity, pressure, and stress fields
have the form

{v, p, σ} = {v0, p0, σ 0}eiωt (2.84)

The Stokes equations (2.29) for viscous flow would then take the form

iωρv0 = –∇p0 + η∇2v0 (2.85)

∇ · v0 = 0, (2.86)

subject to boundary conditions

v0|r=a = V0 (2.87)

v0(r → ∞) → 0. (2.88)

The stress field σ 0 can be computed from the pressure (p0) and
velocity (v0) fields,

σ 0 = –p0δ + η
(
∇v0 + (∇v0)T

)
, (2.89)

so that the drag force

F f (t) = F f
0e
iωt (2.90)

exerted by the fluid on the probe is given by

F f
0 =

∫
|r|=a

n̂ · σ 0dA. (2.91)
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Stokes (1850) solved this problem while studying the influence of
fluid inertia on the oscillations of pendula. Schieber et al. (2013) de-
tail the history and solution of this problem, and place it within the
context of microrheology.

The stream function

ψ(r, θ , t) = ψ0(r, θ ,ω)eiωt (2.92)

for a sphere oscillating with frequency ω is given by

ψ0(r, θ ,ω)

V0 sin2 θ
=

3a
2�2r

(
(1 + �r)e–�(r–a) – (1 + �a)

)
–
a3

2r
, (2.93)

where

�(ω) = (1 + i)
√
ρω

2η
=

1 + i
λV

, (2.94)

and where

λV =

√
2η
ρω

(2.95)

is the oscillatory boundary layer thickness as in eqn 2.50.
Velocity and pressure fields can be derived from eqn 2.93 using

(2.68–2.69), giving

vr
V0 cos θ

= 3
a
r

(
1 + a� – (1 + �r)e–�(r–a)

�2r2

)
+
a3

r3
(2.96)

vθ
V0 sin θ

= 3
a
r

(
1 + �a – (1 + �r + �2r2)e–�(r–a)

2�2r2

)
+
a3

2r3
(2.97)

p
V0 cos θ

= iωρa
3 + 3�a + �2a2

2�2r2
, (2.98)

from which the force exerted by the fluid on the sphere can be
computed as

F f
0 = –6πηa

(
1 + �a +

�2a2

9

)
V0, (2.99)

or

F f
0 = –ζ0

(
1 +

a
λV

+ i
a
λV

)
– iMfωV0. (2.100)
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Here

Mf =
1
2
4πa3ρf

3
(2.101)

is the so-called added mass of the fluid, which represents the equiv-
alent mass of fluid that must be accelerated to make way for the
oscillating sphere.

The inertia of the fluid thus changes the hydrodynamic resistance
ζ ∗(ω),

ζ ∗(ω) = 6πηa (1 – �(ω)a) + iMfω (2.102)

ζ ∗(ω) = 6πηa
(
1 +

a
λV

+ i
a
λV

)
+ iMfω (2.103)

giving it both real and imaginary components.
Physically, λV corresponds to the distance vorticity (momentum)

that diffuses into the fluid during one oscillation period. The resist-
ance (eqn 2.103) shows qualitatively distinct limits, depending on
the relative size of the sphere radius a compared with the oscillatory
penetration depth λV . Since λV depends on ω, a natural “inertial”
frequency emerges,

ωI =
2η
ρa2

, (2.104)

which corresponds to the oscillation frequency above which iner-
tia dominates the resistance to oscillation, and below which viscous
stresses dominate the resistance. For reference, a microrheological
probe of order a ∼ 1 μm in water (for which ν ∼ 10–2cm2/s) has
an inertial frequency ωI ∼ 2 × 106/s.

At low frequencies (ω � ωI ), which corresponds to a/λV � 1, the
sphere moves quasi-steadily, with a resistance

ζ ∗ (ω � ωI ) → ζ0

(
1 +

a
λV

)
+ iζ0

a
λV

, (2.105)

that predominantly reflects Stokes drag, with a minor correction due
to inertia.

In the opposite limit of high frequencies (ω � ωI ), so that a/δ � 1,
the hydrodynamic resistance becomes predominantly imaginary,

ζ ∗(ω) ∼ 4πηa3i

3λ2V
= iMfω. (2.106)
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Finally, the force on a sphere moving with an arbitrary (but
“small”) velocity history V(t) can be constructed by Fourier-
transforming V(t),

Ṽ(ω) =
∫ ∞

–∞
V(t)e–iωtdt, (2.107)

then using eqn 2.99 to determine the force due to each frequency
component Ṽ (ω), and computing the inverse transform. This gives

F(t) = –6πηaV(t)–Mf
dV
dt

–6a2
√
πηρ

∫ t

–∞
dV(τ)
dτ

dτ√
(t – τ)

. (2.108)

The first term is the standard, quasi-steady Stokes drag; the second
term represents the added mass, accouting for the inertia of the fluid
that must be accelerated as the velocity changes. The third term is
the Basset “memory” term (Basset, 1888), and shows the resistance
depending on the sphere’s previous acceleration history.

Exercise 2 concerns an analogous problem—a sphere oscillating in
a purely elastic medium—for which

F0 = –6πGa(1 – a�E)U0 +
1
2
Mfω

2U0, (2.109)

where

�E =

√
ρω2

G
=
ω

c
, (2.110)

or equivalently

F0 = –6πGa
(
1 –

a
c
ω
)
U0 +

1
2
Mfω

2U0. (2.111)

The complex spring constant becomes

κ∗(ω) = 6πGa (1 – a�E) –
1
2
Mfω

2. (2.112)

Exercise 2.3 asks the reader to show that the Correspondence Prin-
ciple can be used to derive these results from the analogous results
for viscous fluids, and vice versa. Because the spring constant and
resistance are related via

κ∗(ω) = iωζ ∗(ω), (2.113)
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eqn 2.112 can be written

ζ ∗(ω) = 6πGa
iω

(1 – a�E) +
i
2
Mfω. (2.114)

Finally, incompressible, viscoelastic materials have complex shear
moduli

G∗ = G0eiδ (2.115)

where δ ranges between 0 for elastic media and π/2 for purely vis-
cous fluids, and where both G0 and δ depend on frequency ω. The
Correspondence Principle immediately yields the relevant results for
spheres oscillating in such materials, e.g., by substituting

�∗
E = ω

√
ρ

G∗ = �Ee–iδ/2 (2.116)

for �E in eqn 2.112, giving

κ̃∗(ω) = 6πG0eiδa
(
1 – a�Ee–iδ/2

)
–
1
2
Mfω

2, (2.117)

or alternatively

ζ ∗(ω) = 6πG∗(ω)a
iω

(
1 – a�Ee–iδ/2

)
+
i
2
Mfω. (2.118)

2.5.4 Particle inertia

Thus far, we have neglected the inertia of the probe in treating its
dynamics. In this case, the force Fp driving a probe into motion is
exactly balanced by the drag force F f exerted by the medium on the
particle

Fp + F f = 0. (2.119)

Probes accelerate during unsteady motion, however, which are bal-
anced by the inertia of the probe, giving

Fp + F f = mpÜp. (2.120)

Probes that oscillate with frequency ω obey the force balance

Fp0 + F f
0 = –Mpω

2U0 = iωMpV0. (2.121)

Using eqn 2.99 for the drag force from the fluid gives

Fp0 = ζ0V0

(
1 +

a
λV

)
+ i
(
a
λV
ζ0 + ω(Mf +Mp)

)
V0. (2.122)
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2.5.5 Spheres forced within compressible
elastic media

The elastic-displacement field around a sphere of radius a subject to a
force F in a compressible elastic medium with shear and bulk moduli
G and K is given by

u(r) =
F

8πGb
·
[
(2b – 1)

δ

r
+

rr
r3

]
–
a2

3
F

8πGb
·
[
–
δ

r
+ 3

rr
r3

]
, (2.123)

or, in index notation,

ui(r) =
Fj

8πGb

[
(2b – 1)

δij

r
+
rirj
r3

]
–
a2

3
Fj

8πGb

[
–
δij

r
+ 3

rirj
r3

]
,

(2.124)

where

b = 2(1 – ν) =
3K + 4G
3K +G

. (2.125)

Note that b → 1 in the incompressible limit (K � G).
Just like for Stokes flow (Section 2.5.2), the displacement field

around a forced sphere can be decomposed into two contributions.
The first is Thomson’s solution (Thomson, 1848) for the field due to
a point force in a compressible elastic medium,

u(r) =
F

8πGb
·
[
(2b – 1)

δ

r
+

rr
r3

]
. (2.126)

which is the analog of the Oseen Tensor (eqn 2.82) for compressi-
ble elastic media. For incompressible materials (K � G, for which
b = 1), in fact, eqn 2.126 reduces exactly to the Oseen tensor (eqn
2.82) when the Correspondence Principle is used to convert be-
tween elastic and viscous solutions, as the reader is asked to show
in Exercise 2.5). The second term in eqn 2.123 is a point-source
dipole—irrotational and incompressible—just as in a viscous fluid.

Evaluating the displacement field at the sphere’s boundary r = a
gives the sphere displacement U,

U = u(a) =
F

12πGab
(3b – 1) =

F
6πGa

(
6K + 11G
6K + 8G

)
. (2.127)

Notably, from the incompressible limit K/G → ∞, we recover

U(K � G) → F
6πGa

, (2.128)

as required by the Correspondence Principle.
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In their F-actin microrheology studies, Schnurr et al. (1997) dis-
cuss the small impact that finite compressibility plays in eqn 2.127.
In the limit of a highly compressible material, K � G (or in terms of
the Poisson ratio, as it approaches ν = –1), the sphere displacement
becomes

U(K � G) → F
6πGa

· 11
8
, (2.129)

which is only about 40% larger than it would move within an incom-
pressible medium with the same shear modulus. This relatively small
contribution explains, in part, why compressibility has generally been
ignored in the microrheology literature. Moreover, most soft materials
probed in microrheology tend to consist of an elastic meso-structure
immersed in an incompressible fluid, which must “drain” through for
the material to deform compressibly, as discussed by Schnurr et al.
(1997), Gittes et al. (1997), and Levine and Lubensky (2001), and
will be explored in Section 2.7.

For reference, we note that Oestricher (1951) computed the resist-
ance of a sphere to oscillatory translations in compressible viscoelastic
media (for which G∗(ω) and K∗(ω) are both frequency-dependent,
which Norris (2006) generalized to allow for particle/medium slip. In
fact, Oestricher recognized the Correspondence Principle in his study
as well.

2.6 Hydrodynamic interactions

We have thus far examined the behavior of individual particles in infi-
nite media. In practice, however, experimental sample cells are finite,
with e.g., glass slides and cover slips bounding the material. Hydrody-
namic interactions between the probe and fluid boundaries changes
the probe’s response to applied forces (i.e., the mobility and resist-
ance of the probes). Since a common goal of microrheology is to use
measured probe mobilities to extract rheological properties intrinsic
to the material, it is important to quantify the impact of these in-
teractions (e.g., probe-wall hydrodynamic interactions), so as to avoid
misinterpreting nearby walls as material rheology.

Hydrodynamic interactions need not only be deleterious, but may
be specifically exploited. For example, “two-point” microrheology
(Section 4.11) uses correlations between two Brownian probes, which
depend explicitly on their hydrodynamic interactions, to measure the
rheology of the material located between them.

We will next discuss how to treat these hydrodynamic interac-
tions, and will focus specifically on the two systems mentioned here:
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Hydrodynamic interactions between two spherical probes, which
forms the basis of two-point microrheology, and hydrodynamic inter-
actions between a probe and a wall, which must be accounted for to
correctly infer the rheology.

2.6.1 Method of reflections

Simple, closed-form solutions (like those presented for the motion
of an isolated sphere) are no longer available once walls or multiple
spheres are present. In typical microrheology experiments, however,
probe particles are generally well-separated (from walls or from each
other). This separation enables a powerful approximation technique,
generally called the method of reflections (Kim and Karilla, 1991;
Leal, 2007; Pozrikidis, 1992), which can produce a series expan-
sion that accounts for hydrodynamic interactions in the resistance or
mobility of probes.

The essence of the strategy is to recognize that well-separated
particles behave approximately as isolated particles, and therefore es-
tablish velocity fields that are very nearly like those in infinite space.
These “isolated probe” velocity fields violate the boundary condi-
tions on other particles or walls, however. In order to “fix” this
violated-boundary condition, a “reflected” velocity field is computed
as though that particle (or wall) were alone in the world. This first
reflected velocity field, however, violates the no-slip boundary condi-
tion on the original probe. A second reflection is thus computed to fix
this violation, again for an isolated sphere, which once again violates
the boundary condition on the wall or second probe, and so on. Ulti-
mately, the method of reflections produces a power series expansion
in powers of a/d, where d is the distance between the probe and the
wall, or between the probe and a second particle.

The full method of reflections requires additional concepts and
results from viscous hydrodynamics. In many cases, however, only the
leading-order correction of hydrodynamic interactions to the probe
mobility is required. We will therefore detail this first reflection here,
and leave the advanced treatment to Section 2.6.5.

The key question concerns how a particle responds when the
fluid around it is moving. Remember that inertia is usually negligi-
ble in the low-Re limit relevant to typical microrheology experiments.
Rather than F = Ma, then, the probe typically responds via F = ζV
(eqn 2.58). That is, a force F must be exerted on a probe in order
for that probe to move through the local fluid. If no force is ex-
erted on the probe, then the probe simply moves with the local-fluid
velocity.



Hydrodynamic interactions 69

To the leading order, then, a probe immersed in a fluid with some
velocity field v∞(r) at some position rp moves with approximate
velocity

Vp ∼ v∞(rp) (2.130)

unless some force prevents it from doing so.
This simple notion now allows HI to be computed directly for the

key situations we have described.

(a)

(b)

(c)

V1(r)

F1

F1
||

F1
⊥

a

d

V2

F1
||V2

|| = b21
||

F1
⊥V2

⊥ = b21
⊥

Fig. 2.9 Hydrodynamic inter-
actions between spheres (a) Two
well-separated spheres, each of radius
a, are separated by a distance d in a
viscous fluid, where d � a. A force
F1 on sphere 1 drives the surround-
ing fluid to flow with velocity field
v1(r), which causes sphere 2 to move
with velocity V2 = b21 · F1, where
b21 is the coupling mobility tensor.
Analysis is simplified by decompos-
ing this system into force-components
parallel (b) and perpendicular (c)
to the separation vector d. Sphere
2 moves with velocities V‖

2 and
V ⊥
2 in response to parallel and

perpendicular force components F‖
1

and F ⊥
1 on sphere one, which defines

the parallel and perpendicular
coupling mobilities b‖

21 and b⊥
21,

respectively. Both are functions of the
relative-separation d/a, and given
by eqns 2.136–2.137.

2.6.2 Hydrodynamic interactions between
spheres in incompressible media

We first start by computing the hydrodynamic coupling between two
well-separated spherical probes, each of radius a, located at the origin
(r1 = 0) and r2 = dr̂, respectively (Fig. 2.9).

6

6
Exercise 8 treats the problem with

different-sized spheres.

We will assume that the
distance of separation d between the probes is much larger than the
probe radii, so that a/d � 1. This is the key computation required for
two-point microrheology (Section 4.11).

If a force F1 is exerted on particle 1, what is the velocity V2 of
particle 2 in response? This relation is called the coupling mobility b21
between the spheres, and will be computed here.

The force on probe 1 drives it into motion with velocity given
approximately by

V1 ≈ F1

6πηa
, (2.131)

and establishes a velocity field v1(r) that can be well-approximated as
that around an isolated sphere in an infinite fluid eqn 2.70,

v1(r) =
1

8πηr

(
F1 + (F1 · r̂)r̂) + a2

24πηr3
(
F1 – 3(F1 · r̂)r̂) . (2.132)

How does the second particle respond to the forced motion of the first
particle? Strictly speaking, the second particle does not “know” that
the first particle even exists, nor that it is moving. Rather, the second
particle is immersed in a fluid that has been set into motion by the
force on the first. If no force is exerted on particle 2, then it simply
moves with the local velocity of the fluid in its immediate vicinity,

V2 ≈ v1(r2). (2.133)

Since we are only treating the leading-order correction due to hydro-
dynamic interactions, we must keep only the leading-order term in
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the far-field velocity field driven by sphere 1,
7

7
The faster decay of the source dou-

blet flow in 2.132 makes its contribution
smaller than the leading-order (Stokeslet)
contribution by an amount of order (a/d)2.
Correctly computing this correction requires
the curvature of v1(r) to be treated prop-
erly, using Faxen’s law, and is described in
Section 2.6.5.

which is the Stokeslet
term

v1(r2) ≈ GSt(r2) · F1. (2.134)

A freely-suspended particle 2 thus responds to a force F1 on
particle 1 by moving with approximate velocity

V2 =
x̂ · F1

4πηd
x̂ +

ŷ · F1

8πηd
ŷ +

ẑ · F1

8πηd
ẑ. (2.135)

Several features in eqn 2.135 are noteworthy. First, the leading-
order approximation to the coupling mobility does not depend on the
size of either probe! In fact, it does not even depend on the shape of
either probe, so long as the separation distance d between particles
significantly exceeds the longest dimension of either particle. This
reflects two key facts. The first is that the far-field flow around the
forced particle is dominated by the Stokeslet—which depends only
on the force that is exerted, rather than the shape or size of the parti-
cle to which it is exerted. Second, particle 2 is not forced through the
fluid, but rather simply moves along with whatever velocity the fluid
is moving. That is—particle 2 does not move because it is forced to;
it moves because it is not forced not to move, and simply moves with
whatever velocity its surroundings move. Neither the forced flow, nor
the advection velocity, cares about the size or shape of either probe,
to the leading order.

Second, the velocity (eqn 2.135) is anisotropic: Particle 2 moves
twice as fast when the force F1 is directed toward particle 2 (i.e.,
F1 = F x̂),

V ‖
2 =

1
4πηd

F‖
1 ≡ b‖21F

‖
1 (2.136)

than when the force F2 is directed perpendicular to the vector separat-
ing the particle pair,

V⊥
2 =

1
8πηd

F⊥
1 ≡ b⊥21F⊥

1 . (2.137)

The coupling mobility is therefore an anisotropic tensor,

b21 = GSt(r2). (2.138)

Likewise, a force F2 on particle two drives it to move with velocity

V2 ≈ F2

6πηa
(2.139)
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and drives particle 1 to move with velocity

V1 =
x̂ · F2

4πηd
x̂ +

ŷ · F2

8πηd
ŷ +

ẑ · F2

8πηd
ẑ. (2.140)

FC
⃦ FC

⃦

FR
⃦ FR

⃦

VR
⃦ VR

⃦

VC
⃦ VC

⃦

(b)

(a)

Fig. 2.10 Collective and Rela-
tive motion of two spheres
with hydrodynamic interac-
tions. Hydrodynamic interactions
give rise to two eigenmodes: (a) Col-
lective mode, where the force on each
sphere is equal in magnitude and
direction, and (b) Relative mode,
where forces are equal in magni-
tude, but oppositely directed. In the
collective mode, hydrodynamic inter-
actions impart particle velocities in
the direction each was forced, giv-
ing an eigenmobility b‖

C = b0(1 +
3a/2d) that is higher than the
isolated-particle mobility. In the rel-
ative mode, hydrodynamic interac-
tions contribute a velocity directed
against the velocity each particle is
forced to move, giving a lower eigen-
mobility b‖

R = b0(1 – 3a/2d).

One can thus construct a multiparticle mobility tensor,(
V1

V2

)
=

(
b11 b12
b21 b22

)
·
(
F1

F2

)
, (2.141)

where each bij represents a 3 × 3 mobility tensor, diagonal blocks
representing self-mobilities,

bii =
1

6πηa
δ, (2.142)

and off-diagonal blocks represent coupling mobilities by the Oseen
tensor:

bi �=j =
1

8πηd

(
δ + d̂d̂

)
, (2.143)

where

d̂ =
r2 – r1

|r2 – r1|
. (2.144)

To illustrate, consider forces F1 and F2 directed parallel to d̂
(the line between the particles), as in Fig. 2.10. In this case, the
two-particle mobility tensor, valid to O( ad ), is given by

(
V ‖
1

V ‖
2

)
=

1
6πηa

(
1 3

2
a
d

3
2
a
d 1

)
·
(
F‖
1

F‖
2

)
. (2.145)

Diagonalizing shows how hydrodynamic interactions affect multi-
particle dynamics, as two distinct eigenmodes appear.

(
V ‖
C

V ‖
R

)
=

1
6πηa

(
1 + 3

2
a
d 0

0 1 – 3
2
a
d

)
·
(
F‖
C

F‖
R

)
(2.146)

One mode (denoted C) is “collective”, in which forces on particles
point in the same direction, so that hydrodynamic interactions con-
tribute to each sphere’s own force-driven velocity. By contrast, forces
on the particles in the relative mode (denoted R) are oppositely-
directed, so that hydrodynamic interactions act against the velocity
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with which each sphere would move if in isolation. The two eigenmo-
bilities,

b‖C = b0(1 + 3a/2d) (2.147)

b‖R = b0(1 – 3a/2d), (2.148)

are thus enhanced and reduced for collective and relative modes,
respectively.

The analogous calculation for particles forced perpendicular to d̂
gives weaker hydrodynamic interactions:

b⊥R,C = b0(1 ∓ 3a/4d), (2.149)

as shown in Exercise 2.9.

2.6.3 Hydrodynamic interactions
in compressible media

Compressibility affects the hydrodynamic interactions between sus-
pended particles. As in Fig. 2.9, we consider two probes separated by
a distance d, and compute the displacementU2 of probe 2 in response
to a force F1 on sphere 1. It is most convenient to decompose the ap-
plied force into components that are parallel F‖

1 and perpendicular
F⊥
1 to the line between the two particles (Fig. 2.10).
From the displacement field around a spherical probe eqn 2.123,

we identify the slowest-decaying component as that due to the point
force (Thomson’s solution, eqn 2.126). As described in Section 2.6.2,
a particle immersed in a medium will simply move along with its local-
material environment (to leading order), unless some force is exerted
on it to make it act otherwise. We must therefore simply evaluate the
point-force displacement field eqn 2.126 at the center r2 of the second
probe, to determine the leading-order approximation for the veloc-
ity of probe 2 in response to a force on probe 1. The parallel and
perpendicular velocities are

U ‖
2 =

F‖

8πGd

(
3K + 7G
3K + 4G

)
(2.150)

U⊥
2 =

F⊥

4πGd
. (2.151)

Notably, the velocity perpendicular to the line of centers does not
depend on material compressibility. The velocity parallel to the line
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of centers, on the other hand, depends on both moduli. In the in-
compressibility limit K/G → ∞, these results are consistent with
incompressible Stokes flows, as the Correspondence Principle would
suggest. Because the parallel and perpendicular resistances depend
on K and G in distinct ways, independent measurements of these two
quantities would enable the two moduli to be extracted. This state-
ment can also be read in reverse: Because this material has two distinct
material parameters, two “linearly independent” measurements are
required to properly characterize the material.

Lastly, note that the coupling mobility decays with separation like
d–1, whether or not the material has finite compressibility. As with
incompressibility, the coupling mobility does not depend on the size
or shape of either probe, so long as they are well-separated.

F⊥

Fig. 2.11 Probe-wall hydrody-
namic interactions. (a) The flow
field due to a point force located a
distance h from a no-slip surface con-
sists of (b) the Stokeslet flow due to
the point force at hẑ, and (c) a wall
flow vw established by a Stokeslet,
Stokeslet doublet, and Source Di-
pole located at the “image” location
ri = –hẑ. (d) The velocity of a
forced sphere near a wall is given ap-
proximately by the self-mobility b0F1

due to the force (b), with a correc-
tion vw(rp – ri) given by the velocity
with which the wall flow advects the
sphere, given by eqns 2.161–2.162.

2.6.4 Particle-wall hydrodynamic interactions:
Confinement effects

In practice, all experimental systems are finite in extent, and are
typically bounded by either solid walls. Walls interact hydrodynam-
ically with particles, which changes the probe mobility in a way
that could be misinterpreted as rheology. It is therefore important
to understand the magnitude of confinement effects inherent to
practical sample cells, and their impact on the interpretation of
microrheology experiments.

To do so, we follow a similar strategy as we did for interparticle-
hydrodynamic interactions. A forced particle sets up a flow that is
approximately that of an isolated sphere. This flow, however, vio-
lates the no-slip condition on a rigid wall. We then must compute
a new fluid velocity field that “corrects” this error on the boundary
conditions at the wall. The probe forced particle thus “sees” its envi-
ronment moving at the velocity set up by the wall, and simply moves
along with its world.

We first consider a sphere of radius a, located a distance z = h
from a solid wall located at z = 0 (Fig. 2.11). The no-slip condition
is imposed on the solid wall. A force F exerted on an isolated probe
would set up a velocity field

v(r) =
1

8πηRp

[ (
F + (F · R̂p)R̂p

)

+
a2

3R2
p

(
F – 3(F · R̂p)R̂p

) ]
, (2.152)
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where Rp is the vector between the observation point (at r) and the
probe (at hẑ):

Rp =
√
x2 + y2 + (z – h)2 (2.153)

R̂p =
r – hẑ
Rp

. (2.154)

As mentioned earlier, this force would drive the probe to move with
velocity

V = (6πηa)–1F (2.155)

if it were isolated.
We here assume the sphere is located far from the wall, meaning

that h � a. Far from the particle (Rp � a), the fluid velocity field
(2.152) is given approximately by the Stokeslet (point force) flow,

v(r) =
1

8πηRp

(
F + (F · R̂p)R̂p

)
≡ F · GSt(Rp) (2.156)

which does not vanish on the wall (at z = 0), in violation of the no-slip
boundary condition.

Blake (1971) showed that a simple set of image singularities, lo-
cated behind the wall at z = –h, fixes the no-slip boundary condition
on the wall (Fig. 2.11). The image flow field to correct the no-slip
condition for a point force F⊥ = F⊥ẑ perpendicular to a nearby wall is
given by

v⊥
w(r) =

[
–GSt(Ri) + 2h2GPD(Ri) – 2hGStD(Ri)

]
· F⊥, (2.157)

where

Ri = r + hẑ (2.158)

is the vector from the image position (–hẑ) and the observation point
r, GPD(Ri) represents the flow at r due to a potential dipole (eqn
2.83) located at –hẑ, and GStD is the flow due to a Stokeslet doublet,
defined by

GStD(r) =
∂

∂z0
GSt(r – r0). (2.159)

The image flow field v⊥
w , given by eqn 2.157, represents the flow set

up by the wall in response the action of the forced probe. This image
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flow field thus causes the fluid environment around the probe to
move, and advects the probe. Evaluating v⊥

w(r = hẑ) at the probe
location r = hẑ gives the correction to the probe velocity due to
hydrodynamic interactions with the wall,

v⊥
w(r = hẑ) = –

3F⊥
16πη

. (2.160)

The probe mobility, perpendicular to a wall, is thus given by

V⊥ = b0

(
1 –

9a
8h

)
F⊥. (2.161)

Using the image system for a Stokeslet force F‖ oriented parallel
to the wall, the mobility of a sphere forced parallel to a wall can be
shown to be

V‖ = b0

(
1 –

9a
16h

)
F‖. (2.162)

In similar fashion, hydrodynamic interactions between a probe and
other surfaces may be computed using the method of reflections,
including liquid/gas interfaces (where a no-shear stress condition
is imposed), for which the perpendicular mobility is reduced, but
parallel mobility is enhanced; planar interfaces between two viscous
interfaces, and partial-slip boundaries.

Key points to remember from this section are: (i) Hydrodynamic
interactions with solid walls reduce probe mobility; (ii) the probe ra-
dius a is the “unit” distance over which hydrodynamic interactions
decay, and (iii) hydrodynamic interactions are fairly long-ranged,
decaying like (a/h).

2.6.5 Higher-order corrections: Faxen’s law,
and multiple reflections

Equations 2.143 and 2.161–2.162 give the leading-order approxi-
mations to the hydrodynamic interactions between two spheres and
between a sphere and a well, respectively. This level of approximation
will suffice for almost all results relevant to microrheology. More ac-
curate expressions can be obtained using the method of reflections. We
include this section primarily for those readers interested in taking the
next step; more extensive discussions can be found in advanced texts
in fluid mechanics and suspension mechanics—e.g., Kim and Karilla
(1991), Leal (2007), and Pozrikidis (1992).
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We will illustrate this explicitly for the coupling mobility between
spheres. Notably, eqn 2.143 only depends on the slowest-decaying
(Stokeslet) component of the velocity field around the forced sphere.
Including the source dipole field eqn 2.83 in the calculation is sim-
ple enough, and gives a correction that is smaller than the Stokeslet
contribution by an amount of O(a2/d2).

When considering corrections this small, however, one must also
account for the fact the Stokeslet velocity field (which we had evalu-
ated at r2, the center of particle 2) is itself heterogeneous. To do so, we
turn to Faxen’s laws, which give the force F and torque L required to
make a sphere of radius a, located at rp, translate at velocity Vp, and
rotate at angular velocity �p while immersed in a background flow
v∞(r). Specifically, Faxen’s laws reveal

F = 6πηa

(
Vp – v∞(rp) –

a2

6
(∇2v∞)|r=rp

)
(2.163)

L = 8πηa3
(

�p –
1
2

∇ × v∞|r=rp

)
. (2.164)

The coupling mobility of interest here relates the velocityV2 of sphere
2, which is force- and torque-free, in response to a force F1 on sphere
1. The force F1 on sphere 1 establishes a flow which advects sphere 2,
so that the velocity field v∞(r) = v1(r) in Faxen’s laws (2.163–2.164).
Because there is no force (F2 = 0) or torque (L2 = 0) on particle 2,
Faxen’s laws (2.163–2.164) can be re-arranged with F = L = 0 to
reveal to obtain the advection velocity of particle 2,

V2 = v1(r2) +
a2

6
∇2v1|r=r2 (2.165)

�2 =
1
2

∇ × v1|r=r2 . (2.166)

Evaluating the full (isolated) velocity field v1 at r2 = dx̂ gives

v1(dx̂) =
1

6πηa

[(
3a
2d

–
a3

2d3

)
F‖
1 +

(
3a
4d

+
a3

4d3

)
F⊥
1

]
(2.167)

and

a2

6
∇2v1|dx̂ =

1
6πηa

[
–
a3

2d3
F‖
1 +

a3

4d3
F⊥
1

]
(2.168)

so that

V2 =
1

6πηa

[(
3a
2d

–
a3

d3

)
F‖
1 +

(
3a
4d

+
a3

2d3

)
F⊥
1

]
. (2.169)
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The parallel and perpendicular coupling mobilities are thus

b‖ =
1

4πηd

(
1 –

2a2

3d2

)
(2.170)

b⊥ =
1

8πηd

(
1 +

2a2

3d2

)
, (2.171)

valid to O(a2/d2).
Hydrodynamic interactions may also lead to relative rotations

between spheres: A force F1 causes particle 2 to rotate via

�2 = –
1

8πηd2
F̂1 × d̂. (2.172)

This basic strategy holds more generally: To compute hydrody-
namic interactions, one must first compute the flow field established
by the forced sphere, accurate to whatever order in a is required. In
the particle-wall case, for example, this would require computing the
higher-order (∼ a2) correction to the flow field established by the
wall, which would require the image system for a potential dipole. One
must then use this flow field in Faxen’s law eqn 2.165 to compute the
advection velocity of the sphere.

2.7 Elastic networks in viscous liquids:
The two-fluid model

Soft materials often consist of a compressible elastic microstructure
immersed in an incompressible viscous liquid. Polymer gels, swollen
by a good solvent, provide an illustrative example: The polymer net-
work itself is elastic and compressible, yet the surrounding solvent is
not. Consequently, regions of the elastic network may only be com-
pressed (or dilated) if the solvent flows out of (or into) those regions,
respectively. Viscous forces resist this flow, and set a time scale for the
fluid to drain from the elastic network.

In the microrheology context, any probe motion that excites
compressional deformations to the elastic microstructure, then, can
cause problems. At sufficiently long times (or low frequencies) for
the viscous liquid to drain freely from the elastic microstructure,
the elastic structure does indeed compress (and dilate) around the
probe, whereas the liquid simply redistributes to maintain its own
incompressibility (Schnurr et al., 1997; Gittes et al., 1997; Levine
and Lubensky, 2001). The material around the probe thus becomes
inhomogeneous—invalidating the Correspondence Principle.
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Swollen polymer gels are often described using the two-fluid model
(Milner, 1993), where a displacement field u describes the (com-
pressible) deformation of the elastic network, with bulk and shear
moduli K and G, respectively (eqn 2.15), and a velocity field v de-
scribes the flow of the solvent. The momentum equation for each
obeys the respective Cauchy stress equation 2.3, wherein a body force
is included to account for the force that each phase exerts on the other.
If the velocities of the two phases are equal everywhere, there is no
body force; if, however, the fluid moves relative to the elastic network,
then the fluid exerts a force on the network,

fb = �ξ (v – u̇), (2.173)

which is equal and opposite to the force that the network exerts on
the fluid. The parameter �ξ describes the solvent/network coupling,
which for a polymer network can be approximated by

�ξ ∼ η

ξ2
, (2.174)

where ξ is a characteristic mesh spacing for the network. This form
for �ξ follows from treating the network as a porous medium, through
which the fluid must flow (akin to Darcy flow).

The two-fluid model for a homogeneous, polymer gel is then
given by

ρe
∂u̇
∂t

=
(
K +

1
3
G
)

∇(∇ · u) +G∇2u + �ξ

(
v –

∂u
∂t

)
(2.175)

ρf
∂v
∂t

= –∇p + η∇2v – �ξ

(
v –

∂u
∂t

)
, (2.176)

where ρe and ρf represent the mass densities of the elastic and
fluid phases, respectively. As we will see, finite compressibility im-
pacts probe dynamics at low frequencies, and so we will neglect the
transient-inertial terms. We will consider oscillations at frequency ω,
for which the two-fluid equations become

0 =
(
K +

1
3
G
)

∇(∇ · u0) +G∇2u0 + �ξ (v0 – iωu0) (2.177)

0 = –∇p0 + η∇2v0 – �ξ (v0 – iωu0) . (2.178)

Compressional deformations may be isolated by taking the divergence
of both equations, accounting for the incompressibility (∇ ·v0 = 0) of
the liquid,

0 =
(
K +

1
3
G
)

∇2(∇ · u0) – iω�ξ∇ · u0 (2.179)

0 = –∇2p0 + iω�ξ∇ · u0. (2.180)
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The second equation reveals how compression impacts the dynamic
pressure p in the fluid, whereas the first governs the dyanamics of
compressive deformations. Scaling gradients with a probe radius a to
treat the displacement field around a spherical probe gives

iω�ξ (∇ · u0) =

(
K + 1

3G
)

a2
∇̃2(∇ · u0), (2.181)

revealing a natural “free-draining” frequency

ωc ∼
(
K + 1

3G
)

�ξa2
∼ ξ2

a2

(
K + 1

3G
)

η
∼ ξ2

a2
G
η

1
1 – 2ν

. (2.182)

At low frequencies (ω � ωc), the fluid drains freely from the network,
effectively decoupling from the dynamics. In this limit, the probe
moves quasi-statically within a compressible medium, as described
in 2.5.5. At high frequencies (ω � ωc), the fluid does not have time
to drain through the gel, and instead forces the network to deform
as an effectively incompressible medium. For frequencies sufficiently
above ωc, both fields behave as incompressible, isotropic media, and
therefore the correspondence principle holds. For low frequencies, on
the other hand, the two “fluids” decouple, with different compress-
ibilities, and so the Correspondence Principle breaks down. Notably,
however, the displacement of a probe in a highly-compressible me-
dium, with the K � G limit given by eqn 2.129, differs from the
displacement in an incompressible medium by only 40%. In this case,
even thought the CP fails, it still makes reasonable predictions.

2.8 Non-isotropic probes

Axisymmetric probes. The isotropic shape of a sphere gives rise to
its isotropic mobility and resistance. By contrast, the response of more
generally-shaped particles depends on which direction they move in,
and is described using mobility and resistance tensors. For example,
the resistance of long, slender rods with velocity perpendicular to the
rod axis is twice that for velocity parallel to the axis,

8

8
Without this anisotropic mobility, flag-

ella could not be used to propel micro-
organisms, or cilia to drive fluid flows!

ζ⊥
rod = 2ζ ‖

rod. (2.183)

The resistance and mobility tensors of a rod, whose axis is directed
along ẑ, is given by

b = b‖

⎛
⎜⎝
1/2 0 0

0 1/2 0

0 0 1

⎞
⎟⎠ , ξ = ζ‖

⎛
⎜⎝
2 0 0

0 2 0

0 0 1

⎞
⎟⎠ , (2.184)
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where ζ‖ = 1/b‖. The anisotropy in rotational mobility and resistance
is much stronger.

Translation-rotation coupling. Rotationally symmetric particles
with fore-aft asymmetry (e.g., egg-shaped particles, or asymmetric
dumbells) will generally rotate when forced in any direction other
than along its symmetry axis. Alternately, a screw-like body (rod-like,
with chiral asymmetries) will rotate about the primary rod axis, in re-
sponse to a force directed along the rod axis. Such translation-rotation
coupling as

L = ξRT · V, (2.185)

appears as an off-diagonal block in a more general-resistance
tensor:

(
F

L

)
=

(
ξT ξTR

ξRT ξR

)
·
(
V

�

)
, (2.186)

so that ξTR and ξRT are 3x3 tensors that give the (drag) force on the
particle when it rotates with angular velocity �, and the drag torque
L on the particle when it translates with velocity V. Moreover, it can
be shown that the entire tensor is symmetric, implying

9

9
More detailed descriptions can be

found in Kim and Karilla (1991), Leal
(2007), Happel and Brenner (1983), and
Guazzelli and Morris (2012).

ξT = (ξT )
T (2.187)

ξTR = (ξRT)
T (2.188)

ξR = (ξR)
T . (2.189)

The mobility tensor is given by the inverse of the resistance
tensor:

b =

(
bT bTR
bRT bR

)
=

(
ξT ξTR

ξRT ξR

)–1

. (2.190)

It is important to note that (2.190) does not imply that each
component of the resistance tensor is given by the reciprocal of the
equivalent component of the mobiity tensor. A generally-shaped par-
ticle that translates without rotating in the ẑ-direction experiences a
drag force and torque given by ξ · ẑ, of which the ẑ-component is ζzz.
By contrast, if the same particle is allowed to settle under a force ẑ,
it does so with translational and rotational velocities given by b · ẑ, of
which bzz gives the ẑ component of the velocity. Physically, the two
situations are distinct.
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EXERCISES

(2.1) Rotational mobility of a sphere. Show that the flow field
around a sphere of radius a, rotating in a viscous fluid with
angular velocity � about the θ = 0 axis is

vφ = �a sin θ

(
a3

r3

)
. (2.191)

Now, relate the torque L on the same sphere to its rotational
velocity �

L = ζR� and � = bRL, (2.192)

to derive the rotational resistance (or mobility) of the sphere,

ζ
sphere
R = 8πηa3 = (bsphereR )–1. (2.193)

Compare the decay of the flow field around a rotating sphere
to that of a translating sphere. Compare how resistance (or
mobility) depend on probe size a for translation vs. rotation.

(2.2) Displacement field around an oscillating sphere. Con-
sider a sphere of radius a oscillating with displacement U0eiωt

in an isotropic, incompressible elastic medium with shear
modulus G. Using the elastic analog of the stream function,
show that the elastic displacement field obeys E4ψ+�2

EE
2ψ =

0, where �E = ω
√
ρm/G = ω/c is the frequency divided by

the shear wave speed in the medium. Show the solution to be

ψ0(r, θ ,ω)

U0 sin2 θ
= –

a3

2r
+

3a

2�2
Er

(
(1 + �Er)e–�E(r–a) – (1 + �Ea)

)
, (2.194)

keeing only outgoing waves (ei(ωt–�Er)). Derive the displace-
ment and pressure fields, the stress tensor, and ultimately
show the force on the sphere to be

F0 = –6πGaU0

(
1 – a�E –

a2�2
E

9

)
. (2.195)
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(2.3) Correspondence Principle for oscillating spheres. Show
that the Correspondence Principle can be used to derive the
stream functions for a sphere oscillating in an incompressible
elastic solid (2.194) from the solutoin in an incompressible
viscous liquid (2.93), and vice versa. Hint: You will need to
compute

√
1/i, for which there are two choices, only one of

which behaves well far from the sphere. Similarly, show that
the force on a sphere oscillating in an elastic medium (2.195)
can be obtained from the force on a sphere oscillating in a
viscous liquid (2.100), and vice-versa.

(2.4) Energy balance for sphere oscillating in elastic medium.
Using (2.195), show the force on a sphere of radius a in an
elastic medium, undergoing a general displacement U(t) to
be given by

F = –6πGaU –
V
c
6πGa2 –

1
2
MaÜ. (2.196)

where Ma = 4πa3ρm/3 is the equivalent mass of the elastic
material occupied by the sphere.

Show that the power exerted by the sphere P(t) =
–F · V on the material during an oscillatory displacement
U0 sinωt is

P(t) =
6πGa2

c
U2
0ω

2 cos2 ωt + . . . (2.197)

+

(
6πGaω –

Mfω
3

2

)
U2
0 sinωt cosωt. (2.198)

Show that a sphere oscillating in an elastic medium exerts a
time-averaged power on the medium,

P̄ = 3πρa2cU2
0ω

2. (2.199)

Even in a purely elastic medium, the elastic energy of a
displaced sphere is lost over time. Where does it go?

(2.5) Correspondence Principle: Point forces in incompressi-
ble viscous and elasticmedia. Evaluate Thomson’s solution
(2.126) for the elastic displacement field u around a point
force F, in the incompressible limit K/G → ∞. Use the Cor-
respondence Principle to replace G with iωη, and verify that
the result is consistent with the Stokeslet (Oseen Tensor, eqn
2.82) flow v due to a point force.
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(2.6) Rotational oscillations in an elastic medium. Consider a
sphere of radius a executing oscillatory rotations with strain
amplitude �(t) = �0eiωt about the θ = 0 axis in an isotropic
elastic medium, with shear modulus G and Poisson ratio ν.
Show that the displacement field is given by

u(t) = �0 × r
(a
r

)3 1 + i�Er
1 + i�Ea

ei(ωt–�E(r–a)), (2.200)

where

�E =

√
ω2ρ

G
=
ω

c
(2.201)

and where only outgoing shear waves are kept. Show that the
torque on the sphere is given by

L0 = 8πGa3�0

(
1 –

a2�2
E

3(1 + i�Ea)

)
, (2.202)

to give a rotational spring constant

κR = 8πGa3
(
1 –

a2�2
E

3(1 + i�Ea)

)
, (2.203)

or resistance

ζ ∗
R =

8πGa3

iω

(
1 –

a2�2
E

3(1 + i�Ea)

)
. (2.204)

(2.7) Rotational oscillations in a viscous fluid. Consider a
sphere of radius a executing oscillatory rotations with angular
velocity �(t) = �0eiωt about the θ = 0 axis in a Newtonian
liquid with viscosity μ. Show that the velocity field is given by

v(t) = �0 × r
(a
r

)3 1 + �r
1 + �a

e–�(r–a)+iωt (2.205)

where � = (1 + i)/λV , and where λV =
√
2ν/ω is the

oscillatory boundary-layer thickness. so that

ζ ∗
R = 8πηa3

(
1 –

a2�2

3(1 + i�a)

)
, (2.206)
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(2.8) Coupling mobility between two different-sized spheres.
Consider the leading-order approximation to the coupling
mobility between two spheres of radii a1 and a2, located at
r1 = 0 and r2 = dx̂, respectively. Start with the case where
forces are parallel to the line of centers (Fi = F x̂). Given a
force F1 = F x̂ on sphere 1, what are the velocities V1 and V2

of spheres 1 and 2? Given a force F2 = F x̂ on sphere 2, what
are the velocities V1 and V2 of spheres 1 and 2? Construct
the mobility tensor

(
V1

V2

)
=

(
b11 b12

b21 b22

)
·
(
F1

F2

)
, (2.207)

for different-sized spheres. What are the two eigenmodes of
this system? What happens when a1 � a2?

(2.9) Coupling mobility between two identical spheres, forced
perpendicular to line of centers. Compute the leading-
order coupling mobility b⊥

21 for two identical spheres of radius
a, separated by d = dx̂. Verify (2.149).

(2.10) Coupling resistance between two identical spheres.
Now, consider the the leading-order approximation to the
coupling resistance between two spheres of radius a, located
at r1 = 0 and r2 = dx̂, respectively. Start with the case where
velocities are parallel to the line of centers (Vi = V x̂). Given
a force V1 = V x̂ on sphere 1, what are the forces F1 and F2

on spheres 1 and 2? Given a velocity V2 = F x̂ on sphere 2,
what are the forces F1 and F2 of spheres 1 and 2? Construct
the resistance tensor

(
F1

F2

)
=

(
ξ11 ξ12

ξ21 ξ22

)
·
(
V1

V2

)
. (2.208)

Invert this tensor to find the mobility tensor,

b = ξ–1, (2.209)

and show it agrees with (2.145).
(2.11) Sphere near a free surface. Section 2.6.4 computed the hy-

drodynamic mobility of a sphere of radius a located a distance
h from a planar, no-slip wall (e.g., a glass slide). Now, com-
pute the hydrodynamic mobility of a sphere in the vicinity of
a free surface (e.g., a liquid-gas interface), where a no-stress
condition (τxz = 0) holds at the wall. Show that “wall flow”
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for a sphere forced towards the wall can be expressed simply
by a Stokeslet,

u⊥
w = –GSt(r + hẑ) · F⊥ẑ (2.210)

u‖
w = GSt(r + hẑ) · F‖x̂ (2.211)

located behind the wall at the image location ri = –hẑ, simi-
larly directed for parallel forces F‖ and oppositely directed for
perpendicular forces F⊥. That is, show that

u⊥ =
[
GSt(r – hẑ) –GSt(r + hẑ)

]
· F⊥ (2.212)

u‖ =
[
GSt(r – hẑ) +GSt(r + hẑ)

]
· F‖ (2.213)

obeys the no-flux and no-stress conditions

∂ux
∂z

∣∣∣∣
z=0

= 0 (2.214)

∂uy
∂z

∣∣∣∣
z=0

= 0 (2.215)

uz(x, y, z = 0) = 0. (2.216)

Given this, show that the leading-order correction to the
sphere’s mobility is given by

b‖ =
1

6πηa

(
1 +

3a
8h

)
(2.217)

b⊥ =
1

6πηa

(
1 –

3a
4h

)
. (2.218)




