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Passive microrheology is distinct from other micro- and macro-
rheological measurements, in that it relies on the inherent thermal
motion of probe particles that are dispersed within the viscoelastic
material of interest. Random thermal forces displace the particles, and
the statistics of their subsequent motion encode the surrounding ma-
terial rheology. We will see in later chapters that this thermal motion
can be measured by a number of experimental techniques, including
microscopy and light scattering. For now, we will focus on the the-
oretical basis of passive microrheology because this analysis leads to
insight into its strengths and a few important limitations.

The Generalized Stokes–Einstein Relation (GSER) is the princi-
pal defining equation of passive microrheology. It is a physical relation
between the thermal motion of probe particles and the material rhe-
ology. Specifically, it relates the observable displacement of the probe
particles to the surrounding material’s rheological response.

The derivation of the GSER consists of two important compo-
nents: First is the Einstein relation, which states that the thermally
fluctuating motion of probe particles is related to the resistance
imposed on the probe by the surrounding material. The second com-
ponent is the generalized Stokes drag (Chapter 2), which is used
to calculate the stresses exerted by the material on the probe. Both
the Einstein relation and the Stokes equation make assumptions re-
garding the material that warrant explicit discussion, since these
impose limitations on the samples that can be measured using passive
microrheology.

We begin this chapter by discussing the Langevin equation, the
equation of motion from which the GSER is derived. After deriving
the Stokes–Einstein relation and the GSER, we discuss the interpre-
tation of passive microrheology experiments and its operating regime.

3.1 The Langevin equation

A discussion of the Langevin equation precedes our detailed develop-
ment of the Stokes–Einstein relationship in Section 3.2. Our primary
interest is to develop the equation of motion for probe particles and
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understanding the contributions of the random thermal force and the
dissipative forces.

Consider a tracer particle suspended in a viscoelastic medium.
When a force f is exerted on the particle, we expect it to move, sub-
ject to the resistance of the surrounding material. The equation of
motion—Newton’s second law—is

1

1
Kubo et al. (1991) and Zwanzig and

Bixon (1970) are excellent references for
their detailed treatments of the Langevin
equation and Brownian motion.

MpV̇(t) = f –
∫ t

–∞
ζ (t – t′)V(t′)dt′, (3.1)

whereMp = (4π/3)a3ρp is the particle mass.
The second term in eqn 3.1 reflects the resistance exerted on the

particle by the surrounding material, written as a convolution of the
instantaneous velocity V(t) with the microscopic resistance ζ (t). We
will derive this function in Section 3.5 when we discuss the Stokes
component in detail. The resistance function accounts for both the
viscous and elastic stresses exerted on the probe. Obviously, a particle
suspended in a viscous medium will stop moving in the absence of an
applied force f; the velocity must decay eventually to zero.

Before we proceed, note the limits of the resistance function inte-
gral in eqn 3.1. Specifying the lower limit of integration as t = –∞,
effectively states that the particle is in thermodynamic equilibrium at
t = 0. Consequently, the resistance function must obey

ζ (t) = 0, t < 0. (3.2)

to ensure that causality is not violated. The particle cannot be
subjected to resistance forces generated by future velocities!

For now, consider the resistance function for a purely viscous fluid,
accelerating slowly enough that inertial forces may be neglected. The
resistance is solely due to the viscous drag force, which depends only
on the instantaneous velocity. The memory function in this case is

ζ (t) = ζ0δ(t), (3.3)

where ζ0 is a constant and δ(t) is the Dirac delta function, and eqn
3.1 becomes

MpV̇(t) = f – ζ0V(t). (3.4)

In Section 2.5.2, the Stokes drag on a sphere translating in a Newto-
nian liquid of viscosity η was shown to be ζ = 6πaη for no-slip (solid)
spheres, and ζ = 4πaη for perfectly slipping spheres (e.g., bubbles).
Note, however, that the quasi-steady Stokes drag eqn 3.4 is only valid
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on time scales greater than the viscous-relaxation time scale ρf a2/η,
where ρf is the fluid density, as shown in section 2.5.3.

Under a constant imposed force such that the particle is not ac-
celerating, the simplified equation of motion can be solved for the
velocity by a straightforward rearrangement,

2

2
See Exercise 1 for the response in an

elastic solid.

V(t) = f/ζ0. (3.5)

In fact, under most circumstances, the particle inertia is so small that
the first term in eqn 3.1 is negligible. Only on very short time scales
(t ∼ Mp/ζ0 in the viscous fluid) do we need to consider particle
(and fluid) inertia. We can demonstrate this by considering a time-
dependent force f(t). Equation 3.1 can be solved formally to give the
velocity

V(t) = V(0)e–ζ0t/Mp +
1
Mp

∫ t

0
e
– ζ0
Mp

(t–t′)
f(t′)dt′. (3.6)

An impulsive force,

f(t) =
Mp

ζ0
f0δ(t), (3.7)

exerted on a particle initially at rest, v(0) = 0, drives the particle with
velocity

V(t) = (f0/ζ )e–ζ0t/Mp . (3.8)

The particle moves initially with velocity f0/ζ0, which then decreases
exponentially until the particle comes to rest, over a relaxation time
scale τ = Mp/ζ0. For a one micrometer diameter particle dispersed
in water, the relaxation time scale is quite small,Mp/ζ0 ∼ 10–8 s—on
the order of only a hundredth of a microsecond!

The Langevin equation is no more than eqn 3.4 with one
peculiarity—that the force is a random, fluctuating force fB that re-
sults from the thermal motion of the surrounding molecules. In a
similar way, inserting a random force fB in eqn 3.1, which does not
assume a form for ζ (t), gives rise to theGeneralized-Langevin equa-
tion.The random force is assumed to have random direction and
magnitude (over sufficiently long time scales), so that its time average
is zero,

〈fB(t)〉 = 0. (3.9)
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For purely viscous fluids that obey eqn 3.4, the random force is also
assumed to be uncorrelated

3

3
See Chapter 5 for a discussion of time–

correlation functions.

with velocity,

〈fB(t) · V(t′)〉 = 0. (3.10)

The form and time-dependence of the random force fB(t) are
determined by the details of the collisions of the particle with the
surrounding fluid. For viscous fluids obeying eqn 3.4, the random
force is only correlated over molecular collision time scales—generally
much shorter than time scales for particle motions—and is therefore
generally approximated by a delta function,

〈fB(t) · fB(t′)〉 = F0δ(t – t′), (3.11)

where the constant F0 is proportional to the mean-squared magni-
tude of the Brownian force. Thermal forces within complex fluids
that obey eqn 3.1 exhibit a more complicated time correlation, as
discussed by (Kubo et al., 1991) and in Section 3.3.

In this simplest case, the Fourier Transform
4

4
The Fourier Transform is discussed in

Appendix A.1.

of eqn 3.11,

〈f̃B(ω) · fB(t′)〉 =
∫ ∞

–∞
e–iωt〈fB(t) · fB(t′)〉dt = F0e–iωt

′
, (3.12)

so that Fourier transforming over t′ gives

〈f̃B(ω) · f̃B(ω′)〉 = 2πF0δ(ω + ω′), (3.13)

or,

〈f̃B(ω) · f̃B(–ω′)〉 = 〈f̃B(ω) · [f̃B(ω′)]∗〉 = 2πF0δ(ω – ω′). (3.14)

The power spectral density expresses how much of the distribution is
contained within dω of a given frequency ω,

Sf (ω) = 〈|f̃B(ω)|2〉 =
∫ ω+dω/2

ω–dω/2
〈f̃B(ω) · [f̃B(ω′)]∗〉dω′ (3.15)

which in this case is independent of frequency

〈|f̃B(ω)|2〉 = 2πF0, (3.16)

a characteristic of white noise. The magnitude of the Brownian force is
determined by the requirements of thermal equilibrium, and will now
be discussed in Section 3.2.



90 Passive microrheology

Fig. 3.1 The trajectory of a Brown-
ian particle is a discontinuous, ran-
dom walk. The dashed circle is the
particle’s starting point and the solid
circle is its end point.

Because the Langevin equation is driven by a random, fluctuating
force fB—owing to the stochastic, thermal motion of the surrounding
molecules—solutions to the Langevin equation are non-deterministic.
Particles that obey the Langevin equation exhibit random walks, an
example of which is shown in Fig. 3.1.

As a stochastic equation, solutions to the Langevin equation will
have the form of statistical (ensemble) averages over many realizations
of probe particle trajectories. Before we discuss the general solution of
the (generalized) Langevin equation for a viscoelastic material, let us
first consider the Brownian motion of particles in a viscous Newtonian
fluid.

3.2 Brownian motion

The thermal, or Brownian, force is well known through the perpetual
random motion of small particles and, historically, provided direct
evidence of the molecular motion inherent in the microscopic under-
standing of the nature of matter (Maiocchi, 1990; Bigg, 2008).

5

5
Named for the botanist and talented

microscopist Robert Brown (1773–1858),
who famously described the perpetual ran-
dom motion of pollen organelles (amylo-
plasts and spherosomes) and finely ground
inorganic particles suspended in water.
Brown made his observations in 1827. His
account was published in 1829, nearly a cen-
tury before Einstein published his molecular
theory (Brown, 1828).

As
Einstein demonstrated, the thermal force is also related to the fric-
tional drag force, which arises due to molecules impacting the moving
particle (Einstein, 1905). These molecular collisions produce both
tangential (shear) forces and normal forces that slow the motion of
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the particle, which gives rise to the resistance ζ0 used in the previ-
ous section. The relationship between the random thermal force and
frictional drag force is a manifestation of the fluctuation-dissipation
theorem (Kubo, 1966; Kubo et al., 1991).

Solutions to the Langevin equation are not deterministic, be-
cause the force fB acting on the particle is random and fluctuating.
Two approaches are commonly used to solve the Langevin equation,
each with distinct advantages and disadvantages. We will explicitly
discuss each for the simplest system introduced in the Langevin equa-
tion (3.4) for quasi-steady Stokes flow, tracking motion in only one
direction (e.g., the x-direction) for simplicity:

MpV̇ (t) = fB – ζ0V . (3.17)

We warn, however, that this approach omits the inertia of the fluid,
and therefore makes incorrect predictions for any material whose den-
sity is not substantially smaller than that of the probe. Nonetheless,
this simpler system is clearer pedagogically, and illustrates the concep-
tual and logical strategies employed to solve the Langevin equation,
without many of the mathematical difficulties or subtleties that arise
for more general (non-Newtonian, or inertial) materials. Once we
have this basic framework in place, we will then describe the proper
generalization for more general systems—both non-Newtonian and
inertial.

3.2.1 Laplace Transform solutions

We begin by taking the Laplace Transform of the Langevin equation
(3.4) for quasi-steady Stokes flow, giving

sMpV̂ (s) –MpV (0) = f̂B(s) – ζ0V̂ (s). (3.18)

Solving for V̂ (s) gives

V̂ (s) =
f̂B(s) +MpV (0)

ζ0 + sMp
. (3.19)

The Laplace Transform naturally introduces the initial velocity V (0),
which makes the equipartition theorem relatively easy to invoke. Mul-
tiplying eqn 3.19 by the initial velocity V (0), then taking the ensemble
average, gives

〈V̂ (s)V (0)〉 = 〈f̂B(s)V (0)〉 +Mp〈V (0)V (0)〉
ζ0 + sMp

. (3.20)
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Because the Brownian force has zero average (eqn 3.9) and is as-
sumed to be uncorrelated with particle velocity (eqn 3.10), the first
term vanishes, leaving

〈V̂ (s)V (0)〉 = Mp〈V (0)V (0)〉
ζ0 + sMp

. (3.21)

The equipartition theorem governs the kinetic energy of particles in
thermal equilibrium with their surroundings, stating that each inde-
pendent degree of freedom has energy 1

2kBT . Since we are tracking
only one-dimensional displacement in this particular example, this
yields

1
2
Mp〈V (0)V (0)〉 = 1

2
kBT , (3.22)

so that

〈V̂ (s)V (0)〉 = kBT
ζ0 + sMp

. (3.23)

Taking the inverse transform gives the velocity autocorrelation func-
tion (VAC),

〈V (t)V (0)〉 = kBT
Mp

e–ζ0|t|/Mp . (3.24)

Although the mean velocity must be zero for a particle experienc-
ing a random fluctuating force, 〈V 〉 = 0, eqn 3.24 shows that the
corresponding velocity fluctuations decay on the time scale Mp/ζ0
identified previously, for the particle’s deterministic response to an
impulsive force.

Strictly speaking, eqn 3.24 only holds for probes whose density
signifiantly exceeds that of the fluid. Much more common in mi-
crorheology is when probe and medium densities are of the same
order, in which case fluid inertia decays on the same time scale as
the particle inertia (∼ a2/ν, where ν = η/ρf is the kinematic viscos-
ity). In that case, the assumption of a constant ζ0 is therefore flawed,
and will be treated properly in Section 3.4.

3.2.2 Fourier Transform solutions

An alternative solution strategy (Kubo et al., 1991; Indei et al., 2012b)
is to decompose V (t) via a Fourier Transform,

V (t) =
1
2π

∫ ∞

–∞
Ṽ (ω)eiωtdω, (3.25)
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which gives

iωMpṼ (ω) = f̃B – ζ0Ṽ , (3.26)

and therefore

Ṽ (ω) =
f̃B(ω)

ζ0 + iωMp
. (3.27)

An advantage (but also disadvantage) to the Fourier Transform ap-
proach is that it does not single out any time t = 0, even if that time is
ultimately arbitrary.

6

6
There is nothing unique about the ini-

tial velocity V (0) in this derivation. Because
the equilibrium ensemble average is station-
ary, and the classical-mechanical equations
of motion are time reversible, the correla-
tions between dynamical variables like the
velocity should depend only on the sepa-
ration between times, and not the absolute
value of time (McQuarrie, 2000; Chandler,
1987). Therefore, we may write

〈V (t′)V (t′′)〉 =〈V (t′ – t′′)V (0)〉
=〈V (t′′ – t′)V (0)〉. (3.28)

To find the velocity autocorrelation function, we compute the
ensemble average

〈Ṽ (ω)Ṽ ∗(ω′)〉 = 〈f̃B(ω)f̃ ∗B(ω′)〉
(ζ0 + iωMp)(ζ0 – iω′Mp)

. (3.29)

Using eqn 3.14 for the statistics of thermal force exerted on a probe
within a quasi-steady, Newtonian liquid gives

〈Ṽ (ω)Ṽ ∗(ω′)〉 = 2πF0
δ(ω – ω′)

(ζ0 + iωMp)(ζ0 – iω′Mp)
. (3.30)

Inverse Fourier transforming over ω, using a time t + τ , gives

〈V (t + τ)Ṽ ∗(ω′)〉 = F0
eiω

′(t+τ)

ζ 20 + ω′2M2
p
. (3.31)

Taking the complex conjugate and inverse transforming over ω′ gives

〈V (t + τ)V (t)〉 = F0
2π

∫ ∞

–∞
e–iω

′τ

ζ 20 + ω′2M2
p
dω′, (3.32)

which can be integrated (e.g., using residue calculus) to yield

〈V (t + τ)V (t)〉 = F0
Mpζ0

e–ζ0|τ|/Mp . (3.33)

Notably, the velocity autocorrelation function depends only on the lag
time τ , not on t; which follows from the fact that the thermal force was
assumed to be stationary.

The final step is to invoke known properties of thermal equilibrium
in order to determine the magnitude of F0. Computing the VAC at
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zero time lag allows the equipartition theorem eqn 3.22 to be invoked,
so that

〈V (t)V (t)〉 = kBT
Mp

=
F0
Mpζ0

, (3.34)

meaning

F0 = kBTζ0, (3.35)

so that

〈V (t + τ)V (t)〉 = kBT
Mp

e–ζ0|τ|/Mp , (3.36)

in agreement with eqn 3.24, found using Laplace Transforms.
Note that eqn 3.35 reveals that the random, fluctuating force ex-

erted on a particle by the collective action of individual, thermally
agitated molecules actually “knows” about the determinstic resist-
ance on that particle being forced to move through its environment.
Why and how would that information be transmitted to individual
molecules, each crashing into its neighbors (and the probe)? The con-
nection is subtle and profound—and reflects the consequences of the
fluctuation-dissipation theorem. In short, the forces exerted on the
particle by the surrounding molecules perform work on the particle
as they do so. In order for the probe to remain in thermal equilib-
rium with its surroundings, that energy must be dissipated back into
the medium, to maintain a net energy balance. The latter (dissipa-
tive) step involves the (deterministic) drag resistance ζ that dissipates
the energy; and the former introduces kBT . This topic is explored in
Exercise 3.3.

It should come as no surprise that these two methods of solving the
Langevin equation give the same answer. It is worth noting, however,
how the two approaches differ. By its very nature, the Laplace Trans-
form only incorporates positive times t > 0, and therefore the initial
condition V (0) enters the Laplace-Transformed Langevin equation
3.18 explicitly. Computing the dot product with V (0), and ensem-
ble averaging, naturally caused the Brownian force term to vanish
from the equation, and left the (ensemble-averaged) initial kinetic
energy alone in the equation. One need not compute or even con-
sider the magnitude of the Brownian forces explicitly in this approach,
since the ensemble-averaged kinetic energy appears directly, and can
immediately be related to kBT via the equipartition theorem.

By contrast, the Fourier-Transform approach incorporates all
times –∞ < t < ∞ in its analysis, and therefore no “initial condition”
V (0) is singled out, or ever appears, in its solution. Instead, one com-
putes 〈Ṽ (ω)Ṽ ∗(ω′)〉 directly, then inverting both Fourier Transforms.
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In so doing, the autocorrelation of the (Fourier-Transformed) Brown-
ian forces 〈f̃B(ω)f̃∗B(ω′)〉 is introduced. The statistics of fB(t) must
therefore be employed directly in the Fourier Transform solution.

The unilateral, or one-sided, Fourier Transform,

Fu[V (t)] =
∫ ∞

0
e–iωtV (t)dt, (3.37)

is sometimes used to solve these problems. Like the Laplace Trans-
form, the unilateral Fourier Transform singles out a particular time
t = 0 as an “initial condition,” and only incorporates times t > 0
in its analysis. The unilateral Fourier Transform and Laplace Trans-
form can be related via analytic continuation, using techniques from
Complex Analysis, so long as the transformed functions meet criteria
common for microrheology conditions. In particular, the probe re-
sponse must be causal, meaning that a probe can not respond to a
force that has not yet occurred. In practice, analytic continuation in-
volves replacing s in the Laplace Transform with iω for the unilateral
Fourier Transform

V̂ (s → iω) = Ṽ (ω) (3.38)

Ṽ (ω → –is) = V̂ (s). (3.39)

See Appendix A.2 for a discussion.

3.2.3 Relating VAC to MSD

We have related the statistical properties of probe velocities to the (de-
terministic) probe resistance ζ0 for a probe moving in a quasi-steady
viscous fluid. In practice, however, it is difficult to measure velocity
autocorrelations. A little additional analysis, however, relates the ve-
locity autocorrelation function to quantities that are more amenable
to measurement.

For example, particles effectively move via random walks over long
time scales, with a diffusivity that can be determined from the velocity
autocorrelation function via

D0 =
∫ ∞

0
〈V (t)V (0)〉dt = lim

s→0
L {〈V (t)V (0)〉} (3.40)

= lim
s→0

kBT
ζ0 +Mps

, (3.41)

so that

D0 =
kBT
ζ0

≡ kBT
6πηa

, (3.42)

as expected.
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More generally, it is far easier in light scattering, particle track-
ing, or other experiments to measure the statistical displacement of the
particles over time using the relation

〈V̂ (s)V (0)〉 = 1
2
s2〈�x̂2(s)〉. (3.43)

If eqn 3.43 feels like a slight of hand, the reader is encouraged to
derive this useful relation in Exercise 3.2. Equation 3.23 can thus
be written in terms of the Laplace Transform of the mean-squared
displacement,

〈�x̂2(s)〉 = 2kBT
s2(ζ0 + sMp)

. (3.44)

Equation 3.43 has an analog in Fourier space, when the unilateral
Fourier Transform (eqn 3.37) is computed:

〈Ṽ (ω)V (0)〉u = 1
2
(iω)2〈�x̃2(ω)〉u. (3.45)

For a particle diffusing in a quasi-steady Newtonian fluid, the
Laplace Transform can be inverted explicitly, giving

〈�x2(t)〉 = 2D0t – 2D0
Mp

ζ0

(
1 – e–ζ0t/Mp

)
, (3.46)

where D0 is given by eqn 3.42. Indeed, the MSD grows linearly in
time for times t � Mp/ζ0, with diffusivity D0. At very short times
(t � Mp/ζ0), by contrast, the MSD evolves via

〈�x2(t � Mp/ζ0)〉 ∼ kBT
Mp

t2, (3.47)

reflecting ballistic probe motion with thermal velocity V =√
kBT/Mp. Notably, the fluid viscosity has no impact on the MSD

over these extremely short times; and instead determines the time
scaleMp/ζ0 beyond which fluid rheology begins to dominate.

To successfully measure material rheology (here, fluid viscosity),
measurements should focus on sufficiently low Laplace frequencies
(s � Mp/ζ0). Under these conditions, eqn 3.44 may be simplified by
neglecting the inertia of the probe (ms � ζ0), giving an approximate
form

〈�x̃2(s)〉 ≈ 2kBT
s2ζ0

, (3.48)
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with inverse transform

〈�x2(t)〉 ≈ 2kBT
ζ0

t (3.49)

for times t > 0. This is the famous Einstein equation, which is often
written in terms of the particle diffusivity

〈�x2(t)〉 = 2D0t, (3.50)

where D0 is given by eqn 3.42. Using eqn 2.75 for the steady-
translational resistance ζ0 of a sphere in a viscous fluid gives the
Stokes–Einstein formula for the particle diffusivity,

D0 =
kBT
6πηa

. (3.51)

This calculation may be generalized to track displacements in two
or three dimensions. Velocity autocorrelation functions, and mean
square displacements, can be computed for each of the three dimen-
sions in exactly the same way. One can track (and compute) each
individually; alternatively, one can pose and solve the vector equiva-
lent of eqn 3.17, and form the scalar product 〈V(t)·V(0)〉 for the VAC
and MSD. In that case, eqn 3.44 reads

〈�x̂2(s)〉 = 2DkBT
s2(ζ0 + sMp)

, (3.52)

where D is the number of dimensions tracked that contribute to the
MSD:

〈�r̂2(s)〉D=2 = 〈�x̂2(s) +�ŷ2(s)〉 (3.53)

〈�r̂2(s)〉D=3 = 〈�x̂2(s) +�ŷ2(s) +�ẑ2(s)〉. (3.54)

The calculation described made several restrictive assumptions:
That the fluid and particle inertia were negligible, and that the resist-
ance of the particle in the fluid has no “memory,” meaning ζ (t – t′) =
ζ0δ(t–t′). The latter assumption does not hold for the viscoelastic ma-
terials of interest to microrheologists, and the assumptions regarding
particle inertia may or may not hold, depending on experimental con-
ditions. In what follows, we will relax all of these assumptions to derive
the Generalized Stokes–Einstein Relation, which is central to the entire
endeavor. In fact, the core strategy and reasoning used in this simpler
derivation will hold, with only minor modifications, for the more gen-
eral case. We will start with the Generalized Einstein Relation, which
represents one component (and assumption) of the GSER.
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3.3 The Generalized Einstein Relation

The Einstein Relation previously derived relates a deterministic trans-
port coefficient (the diffusivity) to the absolute temperature, which
describes the stochastic fluctuations inherent in thermodynamic equi-
librium. We have thus far limited our derivation to quasi-steady
motion in purely viscous fluids. Here, we derive the Generalized
Einstein Relation (GER) for more general viscoelastic fluids and
solids. We thus assume no specific form for the resistance or memory
function ζ (t – t′), other than causality.

The derivation of the GER follows the approach taken in Sec-
tion 3.2 for quasi-steady viscous fluids, now employing the Gen-
eralized Langevin Equation (Mason and Weitz, 1995; Kubo, 1966;
Zwanzig and Bixon, 1970)

mV̇(t) = fB –
∫ t

–∞
ζ (t – t′)V(t′)dt′. (3.55)

The viscoelastic (and inertial) response properties of the medium
are contained within ζ (t – t′). The lower limit of integration, –∞,
represents the fact that the force exerted by the medium on the par-
ticle depends on the particle’s past velocity history. Any time may
be identified as an initial time (“t = 0”), since the system is in
equilibrium.

3.3.1 Fourier Transform

Fourier-Transforming eqn 3.55 and using the convolution theorem
gives

iωMpṼ = f̃B – ζ̃ Ṽ, (3.56)

which can be solved via

Ṽ(ω) =
f̃B(ω)

ζ̃ (ω) + iωMp
. (3.57)

Computing the scalar product with Ṽ
∗
(ω′) gives

〈Ṽ(ω) · Ṽ∗
(ω′)〉 = 〈f̃B(ω) · f̃∗B(ω′)〉

(ζ̃ (ω) + iωMp)(ζ̃ ∗(ω′) – iω′Mp)
, (3.58)

so that if the statistics of the random forcing fB are known, the
statistics of V can be determined.
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Both viscoelasticity and inertia impart “memory” to the material,
and therefore to the probe response—as evident from the convolu-
tion in eqn 3.55. The Brownian force in a quasi-steady Newtonian
fluid (eqn 3.11) was proportional to the instantaneous probe resist-
ance ζ0 and had delta-function time correlation. Likewise, the time
correlation of the Brownian force in a complex or inertial medium is
proportional to the probe resistance, although it is not delta-correlated
in time (Kubo et al., 1990),

〈fB(t) · fB(t′)〉 = 2DkBTζ (|t – t′|). (3.59)

The absolute value in eqn 3.59 reflects the fact that the autocorre-
lation function must be even in time—since either force may appear
“first” in the averaging product—whereas causality requires ζ (t – t′)
to be zero for all t′ > t. Here, we will take D = 3 for simplicity, mean-
ing fB and V are three-dimensional vectors. We will give results for
general dimensions after deriving the key results.

Fourier Transforming over both t and t′ gives

〈f̃B(ω) · f̃B(ω′)〉 = 6kBT
∫
e–iω(t–t

′)e–i(ω+ω
′)t′ζ (|t – t′|)dtdt′ (3.60)

= 6kBTRe
[
ζ̃ (ω)

] ∫
e–i(ω+ω

′)t′dt′, (3.61)

corresponding to

〈f̃B(ω) · f̃∗B(ω′)〉 = 12πkBTRe
[
ζ̃ (ω)

]
δ(ω – ω′). (3.62)

The Brownian noise is not “white” but depends on frequency in the
same way that the probe resistance ζ̃ (ω) does.

With this result, eqn 3.58 becomes

〈Ṽ(ω) · Ṽ∗
(ω′)〉 = 12πkBT

Re
[
ζ̃ (ω)

]
δ(ω – ω′)

|ζ̃ (ω)|2 + ω2M2
p

. (3.63)

Inverting the Fourier Transform over ω′, at a time t′ = 0, gives

〈Ṽ(ω) · V(0)〉 = 6kBT
Re
[
ζ̃ (ω)

]
|ζ̃ (ω)|2 + ω2M2

p
, (3.64)

so that

〈V(t) ·V(0)〉 = 3kBT
2π

∫ ∞

–∞
eiωt

ζ̃ (ω) + iωMp
+

eiωt

ζ̃ ∗(ω) – iωMp
dω. (3.65)
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The two terms are non-zero for t < 0 and t > 0, respectively, because
causality requires ζ (t < 0) = 0, which in turn requires that ζ be
analytic in the lower-half plane. The result for t > 0 is thus

〈V(t > 0) · V(0)〉 = 3kBT
2π

∫ ∞

–∞
eiωt

ζ̃ (ω) + iωMp
dω, (3.66)

whereas for t < 0, integration over the first term vanishes to leave

〈V(t < 0) · V(0)〉 = 3kBT
2π

∫ ∞

–∞
eiωt

ζ̃ ∗(ω) + iωMp
dω. (3.67)

The t < 0 result can can be put in the same form as the t > 0 result
(eqn 3.66) under the coordinate substitution ω → –ω′,

〈V(t < 0) · V(0)〉 = 3kBT
2π

∫ ∞

–∞
eiω

′|t|

ζ̃ (ω′) + iω′Mp
dω′. (3.68)

In fact, both can be represented via

〈V(t) · V(0)〉 = 3kBT
2π

∫ ∞

–∞
eiω|t|

ζ̃ (ω) + iωMp
dω, (3.69)

as one might expect from the fact that the VAC is an even function
of time. When tracking dislacements in D dimensions, this expression
becomes

〈V(t) · V(0)〉 = DkBT
2π

∫ ∞

–∞
eiω|t|

ζ̃ (ω) + iωMp
dω. (3.70)

There are thus two ways to express the VAC in Fourier space.
The bilateral Fourier Transform, where the time integration is per-
formed over –∞ < t < ∞, is represented by eqn 3.64. Because
〈V(t) · V(0)〉 is even in time, however, the unilateral Fourier Trans-
form (eqn 3.37), which integrates only over positive times 0 ≤ t ≤ ∞,
contains identical information, and gives

〈Ṽ(ω) · V(0)〉u = 3kBT

ζ̃ (ω) + iωMp
=

DkBT

ζ̃ (ω) + iωMp
. (3.71)

The unilateral Fourier Transform and the Laplace Transform are inti-
mately related via analytic continuation. Indeed, substituting ω → –is
into eqn 3.71 yields the Laplace Transform-derived analog (eqn
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3.83). The bilateral Fourier Transform, on the other hand, can be
obtained from the unilateral transform via

〈Ṽ(ω) · V(0)〉 = 2Re〈Ṽ(ω) · V(0)〉u. (3.72)

Finally, the VAC can be related to the MSD using eqn 3.45,

〈Ṽ(ω) · V(0)〉u = –
1
2
ω2〈�r̃2(ω)〉u, (3.73)

to give the Generalized Einstein Relation (GSER),

〈�r̃2(ω)〉u = 6kBT

(iω)2(ζ̃ (ω) + iωMp)
. (3.74)

when displacements in all three dimensions contribute to �r̃2, or

〈�r̃2(ω)〉u = 2DkBT

(iω)2(ζ̃ (ω) + iωMp)
(3.75)

when displacements are tracked in D dimensions.

3.3.2 Laplace Transform

As written, eqn 3.55 integrates over times reaching back to t=–∞,
introducing problems for the Laplace Transform approach. In prin-
ciple, doing so gives

sMpV̂(s)–MpV(0) = f̂B(s)–ζ̂ (s)V̂(s)–
∫ 0

–∞
L {ζ (t–t′)}V(t′)dt′. (3.76)

Because V(t′ < 0) falls outside the realm of the Laplace Transform,
one cannot neatly solve for V̂(s). This issue did not arise in eqn 3.20,
because of the instantaneous response of the probe.

A common and appealing approach is to effectively ignore times
t′ < 0 in eqn 3.55,

MpV̇(t) = f 0B(t) –
∫ t

0
ζ (t – t′)V(t′)dt′, (3.77)

and then follow the logic of Section 3.2.1. This is problematic though.
After all, any probe in thermal equilibrium at t = 0 is nonetheless re-
sponding (statistically) to the probe’s previous velocity history, due
to the material’s memory, be it inertial or viscoelastic. The Brown-
ian forces f 0B(t) in this approach, then, must differ from those in the
stationary system (which can not depend on any particular t = 0).
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In fact, eqn 3.77 can be viewed as an alternate version of eqn 3.55,
wherein the Brownian force f 0B(t) incudes “memories” of times t < 0,
above and beyond the stationary Brownian force fB(t),

f 0B(t) = fB(t) –
∫ 0

–∞
ζ (t – t′)V(t′)dt′. (3.78)

If f 0B(t) in eqn 3.77 had the same statistics as fB(t) in the stationary
distribution eqn 3.55, then eqn 3.77 would represent a sphere (and
material) that was at rest for t < 0, rather than in equilibrium, and
then released to start moving thermally for t > 0. As written, f 0B(t) is
therefore not stationary—it depends on time relative to “initial” time
t = 0, at which point the system is in equilibrium, and therefore re-
flects memory of the statistical forces and velocities that preceded the
time (arbitrarily) identified as t = 0.

Taking the Laplace Transform of (3.77) and using the convolution
theorem yields

sMpV̂(s) –MpV(0) = f̂
0
B(s) – ζ̂ (s)V̂(s). (3.79)

Solving for V̂(s), taking the scalar product with V(0), and ensemble
averaging gives the velocity correlation function

〈V̂(s) · V(0)〉 = 〈f̂0B(s) · V(0)〉 + Mp〈V(0) · V(0)〉
ζ̂ (s) + sMp

. (3.80)

Irrespective of the viscoelastic properties of the medium, the equipar-
tition theorem requires

1
2
Mp〈V(0) · V(0)〉 = D

2
kBT , (3.81)

reflecting the D translational degrees of freedom, leading to

〈V̂(s) · V(0)〉 = 〈f̂ 0B(s) · V(0)〉 + DkBT

ζ̂ (s) + sMp
. (3.82)

Finally, for the distribution to be stationary, 〈f̂ 0B(s)·V(0)〉 must vanish,
as was assumed in the quasi-steady Newtonian case (eqn 3.10), giving

〈V̂(s) · V(0)〉 = DkBT

ζ̂ (s) + sMp
. (3.83)

Equation 3.83 can be transformed into its Fourier analog eqn 3.71, via
analytic continuation—simply replacing s with iω. Again, this is to be
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expected based on the causal nature of ζ (t), and therefore its analytic-
ity properties. Finally, the velocity correlation function can be related
to the mean-squared displacement by invoking eqn 3.43, giving

〈�r̂2(s)〉 = 2DkBT

s2
[
ζ̂ (s) + sMp

] . (3.84)

Equation 3.84, like eqn 3.74, is called the Generalized Einstein
Relation, and is central to passive microrheology. The two expressions
are related by analytic continuation, effectively by substiting s = iω
(Pipkin, 1986).

These equations have the form of eqn 3.44, but the Stokes pseudo-
steady-hydrodynamic resistance ζ = 6πaη has been replaced by a
frequency-dependent memory function. In section 3.4, we will relate
ζ̃ (ω) to the viscoelastic properties of the surrounding medium, just
as ζ is related to the (frequency-independent) viscosity in the more
limited case of a particle suspended in a Newtonian fluid.

Before moving on, ponder a key assumption made in this section—
equipartition of energy. Equipartition only holds for systems—probe
particles and their surrounding materials—that are in thermal equi-
librium. This has important implications that we will consider later
when discussing the limitations of passive microrheology. In partic-
ular, a probe particle in thermal equilibrium with its surroundings
cannot drive the material out of equilibrium. Passive microrheology is
therefore limited to measurements of a material’s linear rheological
response.

Another implication is that the material must not be driven by some
out-of-equilibrium process—for instance, by swimming bacteria, the
action of molecular motors or some other chemical process. Such
active matter—including living cells—have long been studied using
tracer particle methods, but their rheology cannot be measured using
passive microrheology alone. For example, Mizuno et al. (2007) used
a combination of passive and active microrheology methods to study
the violation of the fluctuation dissipation theory that occurs when
myosin molecular motors perform work on F-actin filament networks,
further discussed in Section 7.2.1. The myosin in this case causes rel-
ative sliding of the filaments as the protein hydrolyzes ATP. In the
absence of ATP, the actin-myosin network is at equilibrium, and the
fluctuation dissipation-theorem is restored.

3.4 The Stokes component

In Section 3.3, we derived the Einstein component of the GSER,
which relates the (measurable) mean-square displacement of a probe
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particle to the resistance ζ̃ (ω) (or ζ̂ (s) in Laplace space) and inertia
iMpω (or Mps) of the probe as it moves in the fluid. The Einstein
component thus relates a stochastic, thermally fluctuating quantity to
deterministic, mechanical quantities that depend on the probe and
the material. To then extract intrinsic material properties requires the
probe resistance to be related the linear viscoelastic reponse proper-
ties of the material. This step comprises the “Generalized Stokes”
component of the GSER.

In the Fourier domain, the frequency-dependent resistance ζ̃ (ω)
gives the force exerted on the probe by the surrounding material
when the probe is forced to move with oscillatory velocity at fre-
quency ω. To actually determine ζ̃ (ω) for a material with unknown
rheological properties would generally require the equations of mo-
tion for the material, in reponse to the oscillating probe. This seems
at first to present a conundrum: How can one even write down—
much less solve—this mechanics problem, if one does not even know
the constitutive equations of the material?

The resolution to this paradox was discussed in Chapter 2. The
Correspondence Principle, discussed in Section 2.4, demonstrates that
the resistance of a spherical probe moving quasi-steadily in an
incompressible Newtonian viscous fluid

ζ = 6πaη, (3.85)

yields an identical problem—and solution—in the frequency domain
for an incompressible viscoelastic medium, such that

ζ̃ (ω) = 6πaη∗(ω), (3.86)

or, by analytic continuation,

ζ̂ (s) = 6πaη̂(s). (3.87)

Written in terms of the shear modulus, G∗(ω) = iωη∗(ω), the quasi-
steady resistance becomes

ζ̃ (ω) = 6πaG∗(ω)/iω. (3.88)

These equations hold in the case where the fluid inertia is negligi-
ble. For Newtownian fluids, the oscillatory boundary layer thickness
λV =

√
2η/ρω must be significantly larger than the probe radius a

for the quasi-steady Stokes equations to be appropriate. Some tracer
particle microrheology experiments, especially those employing light
scattering, may approach frequencies where particle and fluid inertia
cannot be neglected.
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At higher frequencies, the unsteady Newtonian resistance
(eqn 2.103),

ζ̃ (ω) = 6πηa

(
1 +

a
λV

+ i

[
a
λV

+
2a2

9λ2V

])
(3.89)

can be generalized for incompressible, linear viscoelastic materials,
by replacing the Newtonian viscosity η with the frequency-dependent
complex viscosity η∗(ω) of the linear viscoelastic material, via

ζ̃ (ω) = 6πη∗(ω)a
(
1 + a(1 + i)

√
ρfω

2η∗(ω)

)
+ iωMf , (3.90)

where Mf = 2πρf a3/3 is the “added mass” of the surrounding ma-
terial, which oscillates along with the probe, as discussed in Section
2.5.3. We discuss the effect of inertia in microrheology experiments
further in Chapter 5.

3.5 The Generalized Stokes–Einstein
Relation (GSER)

Combining the results of Sections 3.3 and 3.4 yields

〈�r̃2(ω)〉u = –2DkBT

6πη∗(ω)ω2a
(
1 + a(1 + i)

√
ρf ω

2η∗(ω)

)
+ i(Mp +Mf )ω3

,

(3.91)

which expresses the (experimentally-measurable) MSD entirely in
terms of material properties (density and complex viscosity), fre-
quency, probe size, and the number D of dimensions that are tracked
and that contribute to the MSD 〈�r̃2(ω)〉. Perhaps the most impor-
tant result for microrheology emerges for frequencies that are low
enough for inertia to be negligible, in which case eqn 3.91 reduces to

〈�r̃2(ω)〉u = DkBT
3πa(iω)2η∗(ω)

, (3.92)

or its analog in Laplace space,

〈�r̃2(s)〉 = DkBT
3πas2η̃(s)

. (3.93)

Equations 3.92 and 3.93 are generally called the Generalized Stokes–
Einstein Relation, or GSER. Strictly speaking, they hold only at
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frequencies low enough for inertia to be neglected. Nonetheless, this
frequency range is typically broader than would be accessable to mac-
roscopic rheometers, and therefore encompasses many frequencies of
interest for soft materials. In short, this limit of the GSER connects the
measured MSD of probe particles to the linear viscoelastic spectrum
of the surrounding material.

Following the seminal work of Mason and Weitz (1995), eqn 3.93
was sometimes incorrectly treated as fortuitous. Soon after, however,
Schnurr et al. (1997) essentially invoked the Correspondence Prin-
ciple to rationalize why the GSER should hold for all (non-inertial)
frequencies. Their correction to this sometimes persistent misunder-
standing was subtle and was later reiterated clearly by Indei et al.
(2012b).

Alternative forms of the GSER may be derived from eqn 3.92.
Relating η∗(ω) to the complex shear modulus G∗(ω) via

G∗(ω) = iωη∗(ω) (3.94)

gives an expression that may be solved for G∗(ω),

G∗(ω) = DkBT
3πa(iω)〈�r̃2(ω)〉 (3.95)

or alternately,

Ĝ(s) =
DkBT

3πas〈�r̂2(s)〉 , (3.96)

where Ĝ(s) is the Laplace Transform of the memory functionMr(t).
One can not invert these transforms exactly for generic functional

forms of G∗(ω), because transformed functions appear in denomi-
nators. These relations may be inverted to give real-time relations,
however, by using eqn 1.39,

J̃(ω) =
1

iωG∗(ω)
, (3.97)

to relateG∗(ω) in eqn 3.95 to the transformed creep compliance J̃(ω),

J̃(ω) =
3πa

DkBT
〈�r̃2(ω)〉. (3.98)

This form of the GSER may be immediately inverted (Xu et al.,
1998a; Mason, 2000), thereby connecting the measured MSD di-
rectly to the creep compliance J(t).

J(t) =
3πa

DkBT
〈�r2(t)〉, (3.99)
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where D is the number of dimensions tracked in the experiment. Re-
call, the creep compliance contains the same rheological information
(i.e., the entire linear viscoelastic spectrum of the material).

Equation 3.99 is important. First, it reveals that it is not necessary
to convert passive microrheology data to the frequency domain,
despite the widespread adoption of this approach. In fact, such
conversions may even introduce numerical artifacts, owing to the
limited sampling range in the time domain. The methods of such
conversions are discussed in Section 3.8. Second, eqn 3.99 reveals an
interesting physical insight—the mean-squared displacement can be
understood as a creep experiment. The mean-squared displacement
of a probe particle reflects the “strain” that accumulates due to the
average thermal stress imposed on the probe particle by the random
Brownian force.

Equations 3.95, 3.96, and 3.99 take into account the number of
dimensions tracked in a passive microrheology experiment. Measure-
ments methods such as light scattering (Chapter 5) will report this
three-dimensional value. Techniques such as multiple particle track-
ing (Chapter 4) will typically involve analysis of the mean-squared
displacement in only one- or two-dimensional projections. It is nec-
essary to alter eqns 3.95, 3.96, and 3.99 by the dimension, D. For
instance, data collected as a two-dimensional projection (typical for
video microscopy) yields

J(t) =
3πa
2kBT

〈�r22D
(t)〉. (3.100)

3.6 Passive microrheology examples

Having derived the GSER—the fundamental relation that underpins
passive microrheology—it is worthwhile to consider several examples
of measured probe mean-squared displacements in complex and sim-
ple fluids, and how rheological properties may be determined from
such data sets. Four examples are shown in Fig. 3.2.

The first example (Fig. 3.2a) shows the diffusing wave spec-
troscopy data of Cardinaux et al. (2002), wherein 0.7 and 1.5 μm
diameter particles are dispersed in an aqueous surfactant solution that
self-assembles into worm-like micelles (WLM). Entangled micelles
form transient physical cross-links, resulting in strong viscoelastic
properties. The probe motion at short delay times, far below the
material’s relaxation time, is sub-diffusive, reflecting the internal
dynamics of the network. Over longer times, probe-particle con-
finement gives rise to an elastic plateau, indicating that the solution
behaves like a weak viscoelastic solid. Beyond about 10–1 seconds,
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Fig. 3.2 Examples of tracer particle dynamics in simple and complex fluids. (a) A concentrated aqueous surfactant
solution that forms entangled worm-like micelles. The data is converted the to frequency domain and compared with
bulk rheology measurements (Cardinaux et al., 2002). Reprinted with permission from Europhys. Lett., 2002, Number
5, March, http://iopscience.iop.org/journal/0295-5075 (b) A glycerine solution with increasing viscosity. Adapted from
Schultz and Furst (2011) with permission from The Royal Society of Chemistry. (c) Microrheology of PEO solutions in
water. Reprinted with permission from van Zanten, J. H., Amin, S., & Abdala, A. A. Macromolelcules 37, 3874–80.
Copyright (2004) American Chemical Society. (d) Alginate microrheology as the polysaccharide is induced to gel by
the addition of calcium chloride. Reprinted with permission from Sato, J. & Breedveld, V. J. Rheol., 50, 1–19 (2006).
Copyright (2006), The Society of Rheology.

the qualitative properties change once again, showing predominantly
viscous behavior, as the WLM network relaxes and flows.

Converting the MSD results to frequency-dependent viscoelas-
tic moduli, using methods discussed in Section 3.8, enables direct
comparisons to bulk rheology measurements of the same sample,
as shown in Fig. 3.2b. Notably, microrheology extends the rhe-
ology measurements to considerably higher frequencies—well into
the terminal relaxation regime corresponding to the relaxation of
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individual filaments. Such high-frequency data allows the stiffness of
these and other supramolecular assemblies and macromolecules to be
characterized, as discussed in Chapter 5.

Figure 3.2b shows the measurements of Schultz and Furst (2011)
on simpler samples: Mixtures of glycerine and water for glycerine
concentrations up to roughly 75 wt%. Because the mixtures are New-
tonian, each MSD is simply a straight line. These measurements
were made using particle tracking microrheology (Chapter 4) with
microfluidic devices that are used to prepare many samples simulta-
neously. The viscosities, calculated by the GSER (which reduces to
the Stokes–Einstein relation in this case) track the expected viscosity
of these fluids.

The third example, Fig. 3.2c, is taken from van Zanten et al.
(2004), who measured the dynamics of tracer probes in solutions of
333,000 g/mol polyethyele oxide (PEO), again with diffusing wave
spectroscopy. As the polymer concentration increases from 0.2 to 10
wt%, the mean-squared displacement initially decreases as the solu-
tion viscosity increases. A significant sub-diffusive regime emerges
at imtermediate concentrations, ultimately crossing over to normal
diffusion.

Our last example (Fig. 3.2d) comes from multiple particle tracking
measurements of alginate solutions Sato and Breedveld (2006). Here,
the viscous solutions gel as salt is introduced into the sample through
a dialysis membrane. At equilibrium, before and after the introduc-
tion of the salt, the mean-squared displacement curves are diffusive
(viscous liquid) or entirely flat (elastic solid). Transient viscoelastic
behavior is captured too, and lies in between the terminal states. In this
case, particular particle-tracking microrheology captures the gelation
of soft materials, an application we discuss in detail in Chapter 10.

3.6.1 Limiting behavior of the MSD

It is useful to keep in mind the limiting behavior of the mean-squared
displacement that results from the GSER. In each example shown in
Fig. 3.2, the mean-squared displacement is bound between that of a
viscous Newtonian fluid, in which the mean-squared displacement is
linear with time, and that of an elastic solid, which exhibits a constant,
time-independent displacement. These limits will hold for for several
model fluids discussed in the next section and are represented by the
black curves in Fig. 3.3—one for a fluid with viscosity with a New-
tonian viscosity η = 1 mPa·s and the other for an elastic solid with
a modulus G = 10 Pa. Note that the logarithmic slope of the MSD,
defined by

α(t) =
d ln〈�r2(t)〉

d ln t
(3.101)
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Fig. 3.3 Limiting behavior of the
MSD scaled by particle radius a and
thermal energy kBT for a Newtonian
fluid with viscosity η = 1 mPa·s
and elastic solid with modulus 10
Pa. AMaxwell fluid and the Kelvin-
Voigt model are shown as gray lines.
Both have a viscosity η = 1 mPa·s
and elastic modulus G = 1Pa, giv-
ing identical relaxation times τ =
η/G = 10–3s.

can only have values between

0 ≤ α ≤ 1. (3.102)

Logarithmic slopes outside of this range typically indicate a prob-
lem has occurred with the passive microrheology measurement, due
for instance to statistical noise of the MSD or physical sources
of error, such as convection in the sample or vibration. In Sec-
tion 3.8, we will show that α is related to the loss tangent, tan δ(ω) =
G′′(ω)/G′(ω).

3.7 GSER for model materials

We consider here the moduli and compliances for several models of
viscoelastic fluids and solids and the resulting GSER equations—the
creep compliance expressed as the mean-squared displacement of
tracer particles. Representations of the frequency-dependent moduli
and mean-squared displacement are shown in Figs 3.4, 3.5, and 3.6.
This discussion should help us interpret passive microrheology results
in the time domain of the experiment, rather than relying on a con-
version to the frequency domain. Common methods for converting
between the two domains are discussed in Section 3.8.

3.7.1 Elastic solid

An incompressible elastic solid with shear modulusG∗(ω) = G, which
is a real, constant quantity, and compliance

J(t) =
1
G

(3.103)
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will exhibit a mean-squared displacement that is independent of time,

〈�r2(t)〉 = DkBT
3πaG

. (3.104)

A stiff material, with a large modulus G will have a correspondingly
low compliance.

3.7.2 Viscous fluid

A Newtonian-fluid viscosity η has a creep relaxation

J(t) = t/η (3.105)

and corresponding mean-squared displacement

〈�r2(t)〉 = DkBT
3πaη

t. (3.106)

This is simply the Stokes–Einstein relation, eqn 3.49, with the Stokes
resistance ζ = 6πaη. In the frequency domain, the complex modulus
is purely imaginary

G∗(ω) = iωη. (3.107)

Only the loss modulus G′′ is non-zero. An increasing viscosity gives
rise to a higher loss modulus, but a lower compliance.

3.7.3 Kelvin–Voigt model

The Kelvin–Voigt model, with frequency-dependent complex
modulus

G∗(ω) = G(1 + iωτ), (3.108)

or in Laplace space

G(s) = G(1 + sτ), (3.109)

describes a simple viscoelastic solid with constant storage modulus
G′(ω) = G, viscosity G′′(ω) = iωη and characteristic relaxation time
τ = η/G.

Inverting eqn 3.98 gives

〈�r2(t)〉 = DkBT
3πaG

(1 – e–t/τ ). (3.110)
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The equivalent MSD expression can be found using Eqn 3.99 and the
creep compliance of the Kelvin–Voigt model, as shown in Fig. 3.4,

J(t) = J(1 – e–t/τ ) (3.111)

noting that the recoverable compliance is J = 1/G.

3.7.4 Maxwell fluid

The Maxwell fluid represents a simple model for a viscoelastic fluid,
with an elastic modulus at short times and viscous relaxation at long
times. Its creep compliance is (Ferry, 1980)

J(t) = 1/G + t/η, (3.112)

where J = 1/G is the recoverable elastic compliance. The Maxwell
fluid has a complex modulus

G∗(ω) = Giωτ
1 + iωτ

(3.113)

or

Ĝ(s) =
Gsτ
1 + sτ

(3.114)

where

τ =
η

G
(3.115)

is the characteristic relaxation time of the Maxwell fluid. Expanding
eqn 3.113 by multiplying (1 – iωτ)/(1 – iωτ), we write the storage
modulus

G′(ω) = Gω2τ2

1 + ω2τ2
(3.116)

and loss modulus

G′′(ω) = Gωτ
1 + ω2τ2

. (3.117)

Equation 3.99 gives the mean-squared displacement for the Maxwell
model,

〈�r2(t)〉 = DkBT
3πaG

( t
τ
+ 1
)
. (3.118)
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An unusual feature of the Maxwell model at short times is that
the mean-squared displacement approaches a constant value given
by the elasticity of the material. Of course, a plateau in the MSD
below the relaxation time t < τ is expected, but at short enough times,
the probe displacement must go to zero. This apparent contradiction
is an artifact of neglecting the fluid inertia in the Stokes equation,
and can be corrected by properly accounting for the time-dependent
equations of motion (Grimm et al., 2011; Indei et al., 2012b). We
discuss inertial corrections in Section 5.6.2 when we present high-
frequency microrheology with diffusing wave spectroscopy.

3.7.5 Power-law response

A material with a power-law response has a shear relaxation modulus

G(t) = Kt–n (3.119)

where K , the “consistency” has fractional units Pa·sn and n is an ex-
ponent bounded by 0 < n < 1. Then the storage and loss moduli
scale as G′ ∼ G′′ ∼ ωn over all frequencies (Winter and Mours, 1997;
Jaishankar and McKinley, 2012). Specifically,

G∗(ω) = K�(1 – n)(iω)n (3.120)

and

G′(ω) = K�(1 – n)ωn cos
nπ
2

(3.121)

G′′(ω) = K�(1 – n)ωn sin
nπ
2

(3.122)

where �(x) is the gamma function. Whether the material response is
dominated by viscous or elastic behavior depends on the value of n:
For n > 1/2 the loss modulus has larger magnitude than the storage
modulus. When n < 1/2, the storage modulus has larger magnitude
than the loss modulus. When n = 1/2, neither dominates, meaning
that G′ = G′′ over all frequencies.

Power-law rheology arises when a hierarchy of relaxation time
scales are established by a microstructure that is self-similar over
a wide range of length scales. An example is the fractal structure
of an incipient gel at the percolation transition (Winter and Cham-
bon, 1987; Martin et al., 1988; Adolf and Martin, 1990; Winter
and Mours, 1997). Power-law rheology also occurs in many com-
plex materials and products, including biofluids, foods, cross-linked
polymers, microgels, and hydrogels.



GSER for model materials 115

The Laplace Transform of G(t) for the power law material is

η̂(s) =
∫ ∞

0
Kt–ne–stdt = K

�(1 – n)
s1–n

, (3.123)

where we note again that the complex viscosity and relaxation
modulus are transform pairs, as discussed in Section 1.2.2.

7

7
The literature often uses G̃ or Ĝ to

denote transforms of the relaxation modu-
lus. We instead use the transformed viscosity
η∗(ω) or η̂(s), to avoid confusion with the
complex modulus G∗(ω) and its Laplace
variant Ĝ(s).

The
Laplace-transformed creep compliance is then given by

Ĵ(s) =
1

K�(1 – n)
1
sn+1

, (3.124)

with inverse

J(t) =
tn

K�(1 – n)�(n + 1)
. (3.125)

This can be simplified using the relation �(1–n)�(n+1) = nπ/ sin nπ ,
giving

J(t) =
sin nπ
nπK

tn, (3.126)

from which the GSER determines the mean-squared displacement
to be

〈�r2(t)〉 = DkBT sin nπ
3nπaK

tn (3.127)

for a probe in a power-law fluid, as shown in Fig. 3.5.

3.7.6 Rouse and Zimm models

The Rouse model is a bead-spring representation of dilute flexible
polymers dispersed in a Newtonian solvent (Ferry, 1980; Doi and
Edwards, 1986; Rubinstein and Colby, 2003). Beads of radius b are
connected by Hookean springs. The beads represent the hydrody-
namic drag exerted on the polymer chains, and the stiffness of the
springs captures the entropic elasticity of the flexible molecules. The
relaxation modulus is a summation over the relaxation of the chain’s
normal modes

G(t) = nkBT
N∑
p=1

e–t/τp . (3.128)

Here, n is the number density of molecules and τp is the characteristic
relaxation time of the pth mode of a chain consisting of N beads,

τp =
ζb2N2

6π2kBTp2
(3.129)
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where the friction coefficient on each bead is ζ ≈ ηsb and ηs is
the solvent viscosity. The longest relaxation time of the polymer,
corresponding to the mode p = 1, is

τR =
ζb2N2

6π2kBT
(3.130)

and the shortest time scale of the relaxation is that of the monomer,

τ0 ≈ ζb2

kBT
. (3.131)

In the frequency domain, the storage and loss moduli of the Rouse
model are

G′(ω) = nkBT
N∑
p=1

ω2τ2p

1 + ω2τ2p
(3.132)

and

G′′(ω) = ωηs + nkBT
N∑
p=1

ωτp

1 + ω2τ2p
, (3.133)

representing the summation over N distinct relaxation times in the
Maxwell model.

As illustrated in Fig. 3.6, Between the frequencies 1/τ0 < ω < 1/τR
in the terminal regime, the Rouse model moduli scale as

G′(ω) = G′′(ω) – ωηs ∼ ω1/2. (3.134)
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That is, they are equal and have a power-law dependence on fre-
quency of ω1/2—a signature of the “free-draining” hydrodynamics
of the model.

8

8
This is different from the free-draining

limit of the compressibility discussed in
Chapter 2.

Likewise, the creep compliance scales as t1/2 at short
times. Thus, the mean-squared displacement of a probe particle in a
passive microrheology experiment will exhibit sub-diffusive motion,

〈�r2(t)〉 ∼ t1/2 τ0 < t < τR. (3.135)

Below ω < 1/τR, G′(ω) ∼ ω2 and G′′(ω) ∼ ω. For t > τR,
there is a cross-over from sub-diffusive to diffusive probe dynamics,
〈�r2(t)〉∼ t.

The Zimm model differs from the Rouse model by accounting for
the hydrodynamic interactions between the beads of the bead-spring
model. The polymer is no longer considered “free-draining.” This
affects the terminal high-frequency response of the solution, which
takes on a power law form

G′(ω) ∼ G′′(ω) – ωηs ∼ ω1/3ν (3.136)

where the Flory exponent ν depends on the polymer-solvent inter-
action. In theta-solvents, ν = 1/2 and the scaling becomes G′(ω) ∼
G′′(ω) – ωηs ∼ ω2/3, while polymers in good solvents exhibit a lower
Flory exponent, ν ≈ 0.588, and correspondingly lower exponent
(∼ 0.57). The terminal regime will be apparent in the mean-squared
displacement at time scales shorter than the Zimm relaxation time
τZ ≈ τ0N3ν ,

〈�r2(t)〉 ∼ t1/3ν τ0 < t < τZ . (3.137)

3.7.7 Semiflexible polymers

Semiflexible polymers are macromolecules and macromolecular as-
semblies for which the degree of the polymer backbone rigidity
becomes a significant source of elasticity and dissipation compared
to flexible and rod-like molecules. Comprehensive models for the
rheology of semiflexible polymers have been discussed by Morse
(1998c,a,b), Shankar et al. (2002), MacKintosh et al. (1995), and
Gittes and MacKintosh (1998). These theories cover a wide range of
conditions, including concentration (ranging from the dilute to tightly
entangled), persistence lengths (from flexible to rigid), and the effect
of cross-linkers.
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The rheology of semiflexible polymers has been especially prom-
inent in the microrheology literature largely due to the number of
examples that are found in biological materials, especially the protein
filaments and microtubules that dominate cell and tissue mechanics
(Dichtl and Sackmann, 2002; Addas et al., 2004), filamentous viruses
(Sarmiento-Gomez et al., 2012), and peptide assemblies (Ozbas et al.,
2004). A hallmark of semiflexible polymer microrheology is that its
high-frequency terminal response takes on the scaling

G∗(ω) ∼ ω3/4, (3.138)

which means that the mean-squared displacement scales as

〈�r2(t)〉 ∼ t3/4 (3.139)

at short times. This scaling has been measured by microrheology us-
ing diffusing wave spectroscopy, magnetic tweezers, and laser tracking
microrheology (Amblard et al., 1996; Gittes et al., 1997; Palmer et al.,
1998, 1999; Mason et al., 2000). Indeed, this is one direct means of
measuring the persistence length lp of a material composed of semi-
flexible polymers and supramolecular assemblies, as we discuss in
Section 5.6.

3.8 Converting between the time
and frequency domains

In Section 3.5, we found that the shear modulus in the frequency do-
main can be expressed in terms of the Laplace or Fourier Transform
of the mean-squared displacement. In experiments such as video mi-
croscopy particle tracking (Chapter 4) and light scattering (Chapter
5) the mean-squared displacement is measured directly as a func-
tion of real time, at discrete time intervals over a range of times. We
noted that the time-domain data can be interpreted directly as a creep
measurement, but it is often desirable to express the microrheology
in the frequency domain to compare with oscillatory bulk rheology
or theory. The widespread use of oscillatory rheology has also made
interpretation of rheological measurements in the frequency domain
more familiar to many rheologists.

While a direct numerical transform of the time-domain data to the
frequency domain is possible, this method is often unreliable, in that it
leads to significant truncation errors at the frequency extremes. Oth-
ers have used polynomial fits of the logarithmic time-domain data
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ln〈�r2(ln t)〉 and their analytical transforms into the frequency do-
main (Willenbacher et al., 2007). Drawbacks include the accuracy
of the fit, the potential to introduce artifacts into the transformed
data, and the possibility that the apparent frequency-dependent mod-
uli do not satisfy the Kramers-Kronig relations (cf. Section 1.2.2).
Two other methods for converting the time-domain data to the fre-
quency domain include the power-law approximation and methods
of constrained regularization.

3.8.1 Power-law approximation

One common method of calculating the frequency-domain moduli in
microrheology is to approximate the MSD at each sampled time t0 as
a power–law function,

〈�r2(t)〉 ≈ 〈�r2(t0)〉(t/t0)α(t0), (3.140)

where α(t0) is the logarithmic slope of the mean-squared displace-
ment evaluated at t0,

α(t0) =
d(ln〈�r2(t)〉)

d(ln t)

∣∣∣∣∣
t=t0

. (3.141)

The Laplace Transformation of a power-law,

L {tp} =
�(p + 1)
sp+1

(3.142)

where �(x) is the Gamma function, implies that

s〈�̃r2(s)〉 = 〈�r2(t0)〉(s0/s)α(t0)�(α + 1), (3.143)

with s0 = 1/t0. Equation 3.96 is then recovered, giving

G(s0) =
DkBT

3πa〈�r2(t0)〉�[α(t0) + 1]

∣∣∣∣
t0=1/s0

, (3.144)

Here again, D represents the number of dimensions tracked for the
mean-squared displacement. Evaluating eqn 3.144 at each sampled
time t0 in the MSD gives the corresponding relaxation modulus at
s0 = 1/t0 from the value of the MSD and its logarithmic slope, as il-
lustrated in Fig. 3.7. Similarly, the Fourier domain yields the modulus
amplitude,

|G∗(ω0)| =
DkBT

3πa〈�r2(t0)〉�[α(t0) + 1]

∣∣∣∣
t0=1/ω0

. (3.145)
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From this, the storage G′(ω) and loss G′′(ω) moduli are calculated as

G′(ω) = |G∗(ω)| cos(πα(ω)/2) (3.146)

G′′(ω) = |G∗(ω)| sin(πα(ω)/2). (3.147)

Alternatively, the loss tangent can be expressed as

tan δ(ω) = G′′(ω)/G′(ω) = tan [πα(ω)/2] . (3.148)

This equation gives the relation between the phase angle and logarith-
mic slope of the mean-squared displacement,

δ(ω) =
π

2
α(ω). (3.149)

With α limited to values between 0 and 1, the phase angle is con-
strained to 0 ≤ δ ≤ π/2. In the limit of an elastic solid, α = 0 and
tan δ = 0, and of course the loss tangent diverges for α = 1.
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Fig. 3.8 The Gamma function eval-
uated over the range of permissi-
ble values for the logarithmic MSD
slope, 1 ≤ α + 1 ≤ 2.

The approximate transform to the frequency domain based on the
power–law approximation works well when 〈�r2(t)〉 is a fairly smooth
function of time (on a doubly logarithmic scale). For cases in which
the MSD exhibits more curvature, higher-order terms in the power–
law expansion can be included (Dasgupta et al., 2002). The chief
drawback of the approximate method is the accuracy of the numer-
ical differentiation of the MSD to calculate its logarithmic slope, α.
The differentiation mainly affects tan δ or G′ and G′′ and not G(s)
or |G∗(ω)|, since the Gamma function is a weak function of its per-
missible values, 1 ≤ α + 1 ≤ 2, as illustrated by plotting �(x) for
1 ≤ x ≤ 2 in Fig. 3.8. The calculated values of G′ and G′′ may also
deviate significantly when the cosine and sine functions in eqns 3.146
and 3.147 approach zero. This is clearly evident in Fig. 3.7 for the
low-ω behavior of G′′, which decays more quickly as ω → 0 than the
G′′(ω) = ηω allowed by the Kelvin-Voigt model.
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3.8.2 Constrained regularization

An alternate to the approximate transform is to calculate 〈�r̃2(s)〉 =
L {〈�r2(t)〉} using a constrained regularization method (Honerkamp
and Weese, 1989; Elster et al., 1992; Honerkamp and Weese, 1993;
Solomon and Lu, 2001; Lu and Solomon, 2002; Starrs and Bartlett,
2003a). In one version of this approach, the relaxation modulus G(t)
is expressed as a summation of N Maxwell model relaxation modes
(Ferry, 1980; Honerkamp and Weese, 1989),

G(t) =
N∑
i=1

hie–t/τi (3.150)

where hi and τi are the amplitude and relaxation time of mode
i, respectively.

9

9
This expression can be applied to vis-

coelastic solids by including a finite static
modulus.

The Laplace Transform of eqn 3.150 is the shear
modulus

η̂(s) =
N∑
i=1

hisτi
1 + sτi

. (3.151)

The inverse problem is to identify values of hi and τi such that
eqn 3.150 is a good description of the time-domain mean-squared
displacement.
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Fig. 3.9 Microrheology of 4 wt%
telechelic associative polymer thick-
ener. Reprinted from Curr. Opin.
Colloid Interface Sci., 6, Solomon,
M. J. & Lu, Q. Rheology and dy-
namics of particles in viscoelastic me-
dia, 430–7, Copyright (2001), with
permission from Elsevier.

The number of relaxation times, their values, and their individ-
ual weighting is an ill-posed problem—the errors in the inversion are
unbounded. Instead, one determines the values of hi and τi using
constraints that, for instance, require the relaxation spectrum to be
smooth or at least continuous. Lu and Solomon (2002), for instance,
use the method of Provencher (1982a) implemented in the program
package CONTIN. They suggest that constrained regularization may
perform better than the power-law approximation, as previously dis-
cussed, when the rheology exhibits a strong frequency dependence.
A comparison of the CONTIN and power-law approximation meth-
ods using light-scattering microrheology for an associative polymer
solution are shown in Figure 3.9. The CONTIN derived data does
agree with the low-frequency response of the bulk rheometry data
much more closely than the moduli calculated using the power-law
approximation.

Another regularization method uses the Tirkhonov regularized fit
of the mean-squared displacement (or creep compliance) with a set
of N basis functions derived from a Voigt fluid (Mason et al., 2000;
Ferry, 1980)

J(t) =
N∑
n=1

Ln(1 – e–t/τn) (3.152)
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or Kelvin-Voigt model (Kloxin and Van Zanten, 2009; Tanner et al.,
2011),

J(t) =
N∑
n=1

Ln(1 – e–t/τn) +
t
η0

. (3.153)

The number of terms is kept smaller than the measured data points
and τN are fixed to be logarithmically spaced. The coefficients Ln
are determined subject to the minimization of a function that weights
the residual sum of squares between the fitted function and measured
values Ĵ(t) with a “smoothness” constraint,

minimize: [J(t) – Ĵ(t)]2 + λ
∂2L
∂τ2

. (3.154)

This combination of terms prevents unphysical variations in the
values of Ln. The smoothness is determined by the parameter λ
and is given by the method implemented by Weese (Weese, 1993;
Weese, 1992). Once an appropriate model of the retardation spec-
trum is found, the complex shear modulus is

G∗(ω) =
(

N∑
n=1

Ln
1 + iωτn

)–1

. (3.155)

An example of the regularized fit of the Voigt fluid basis func-
tions is shown in Fig. 3.10 for entangled semiflexible networks of
F-actin. The mean-squared displacement (or creep compliance) is
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fit using equation 3.152 with N = 25 terms. The resulting retar-
dation spectrum is given in Fig. 3.10b from which the storage and
loss moduli are calculated using eqn 3.155. The Tirkhonov regular-
ized fit method has also been used to analyze probe microrheology
measurements of micellar solutions of block copolymers (Kloxin and
Van Zanten, 2009; Tanner et al., 2011) and associative polymers
(Abdala et al., 2015).

3.9 Strengths and limitations of passive
microrheology

The reader is no doubt interested in the theory and practice of
microrheology due to its many potential applications. The small
sample size requirements of microrheology and the ease of its
implementation—at minimum requiring simple movies of particle
Brownian motion—are among its strengths that will be highlighted
throughout the remainder of this book. However, there are several im-
portant limits on passive microrheology that can be brought to light
based on the discussion in this chapter.

The first and foremost limitation of passive microrheology is that
it can only measure a material’s linear rheology, because probe par-
ticles are in thermal equilibrium with the surrounding material. A
probe in equilibrium with a material may not drive that material
out of equilibrium! As a result, many interesting and technologically
important rheological properties are inaccessible to passive microrhe-
ology: Yielding, shear thinning, shear thickening, and so on. Such
behaviors, which arise when a material is driven strongly out of equi-
librium, can only accessed in microrheology by active techniques in
which the probe motion is driven by non-thermal forces, as discussed
in Chapter 7.

Second, passive microrheology is limited to materials with rather
weak moduli and low viscosities (or correspondingly large compli-
ances) compared to many bulk-rheology measurements, because it
depends on thermal motion as the driving force. The average thermal
stress exerted on a particle scales as ∼ kBT/a3. For a one micrometer
diameter particle, this is on the order of just 10–2 Pa. As we discuss
later, this range does not necessarily limit the utility of microrheology;
it can still be used to screen whether an elastic gel forms from a pre-
cursor viscous fluid, for instance, even if the compliance is too low to
be measured quantitatively. Conversely, passive microrheology excels
at measuring many weakly-elastic or low-viscosity materials that are
otherwise difficult to characterize using bulk rheometry, especially if
the material is only available in limited quantities.
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3.10 Validity of the GSER

The validity of the GSER depends on how well the assumptions made
in its derivation apply to the experiment at hand, the two key ones
being: (1) The applicability of the Stokes equation—the probe ex-
periences a continuum mechanical environment—and (2) that the
material is at thermal equilibrium, or sufficiently close to thermal
equilibrium to constitute a “quasi-equilibrium” in the case of materi-
als undergoing a chemical reaction, such as gelation or degradation.
Non-continuum effects are not limited to passive microrheology, but
affect all forms of probe microrheology, including active microrheol-
ogy; they are all based on the Stokes relation relating the force acting
on a probe that accompanies the material deformation.

3.10.1 Non-continuum effects

For the Stokes component we can ask whether the material behaves as
a continuum on the length scale of a probe particle. This assumption
could be violated if the probe size is smaller than the length scales of
the material microstructure, as we discussed in Section 2.2. The local
microstructure can also be changed by the particle.

A number of ways have been used to experimentally verify
the validity of the continuum behavior in passive microrheology.
Comparing the calculated moduli to other experiments, including
bulk rheology, in overlapping frequency ranges (or by extrapolat-
ing one data set to the other) is one approach to testing its validity.
Another method is to perform a series of experiments using differ-
ent probe sizes, and a third is to use particles with different surface
chemistries. Finally, the correlated motion of probes, presented in
Section 4.11 and called two-point microrheology, can be used to
measure the microrheological response on length scales larger than
the probe diameter.

Particle size

Measurements made with probes of several diameters should collapse
when scaled by the corresponding probe radius

〈�r2(t)〉a = DkBT
3π

J(t) (3.156)

provided the GSER is satisfied. Microrheology measurements of as-
sociative polymer solutions using a range of probe particles with
diameters from 0.3 to 2.0 μm provide a good illustration of one such
breakdown of the GSER (Lu and Solomon, 2002). As we see in
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Fig. 3.11 Microrheology of HEUR associative polymers at (a) low concentration—1 wt%, and (b) higher
concentration—4 wt%. Reprinted with permission from Lu, Q. & Solomon, M. J., Phys. Rev. E, 66,
61504 (2002) Copyright (2002) by the American Physical Society.

Fig. 3.11a, the mean-squared displacements for probes at the lower
concentration of polymer collapse when scaled by the particle radius.
At a higher-polymer concentration, however, the mean-squared dis-
placements fail to collapse at the shortest times (Fig. 3.11b). The
deviation from the GSER behavior is associated with the formation of
a growing network of polymers. The results suggest that larger parti-
cles are sufficiently entangled in the developing network and exhibit
a plateau modulus consistent with Maxwell fluid rheology, but that
smaller particles are able to percolate through the presumably inho-
mogeneous structure. It is also apparent in Fig. 3.11b that beyond
some relaxation time of the polymer network, probes of all diame-
ters move as if in a viscous solution, and the proper particle scaling is
recovered.

Microrheology experiments by van Zanten et al. (2004) for aque-
ous poly(ethylene oxide) (PEO) solutions demonstrate the proper
particle size scaling expected of the GSER. The data are reproduced
in Fig. 3.12. Four experiments measuring the Brownian motion of
spherical polystyrene tracers in 7 wt% PEO collapse on a single curve
when plotted as the creep compliance, J(t) = (πa/kBT)〈�r2(t)〉,
which scales out the particle size. The four probe diameters tested
range from 0.195 to 1.55 μm.

Surface chemistry

The surface chemistry of the probes can affect microrheology
measurements. Such a dependence usually indicates the depletion,
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Fig. 3.12 Microrheology of poly
(ethylene oxide) polymers solutions
using for probe sizes ranging from
0.195 to 1.55 μm diameter. Adapted
with permission from van Zanten,
J. H., Amin, S., & Abdala, A. A.
Macromolelcules 37, 3874–80
(2004). Copyright (2004) American
Chemical Society.

accumulation, or restructuring of the material in the vicinity of the
probe.

A good example is the sensitivity of F-actin microrheology on
probe chemistry. McGrath et al. (2000) used laser tracking microrhe-
ology to measure the microrheology of tightly entangled F-actin
networks and found that the modulus amplitude and phase angle de-
pended on the surface chemistry of polystyrene probes, as shown in
Fig. 3.13. The modulus amplitude had a clear dependence on the ca-
pacity of the probes to adsorb F-actin monomer. Also notable is the
significant difference in the phase angle, plotted in Fig. 3.13b, across
the samples. Probes with the lowest binding capacity have a phase

101

101

ω (rad/s) ω (rad/s)

δ (
de

gr
ee

s)

P
L

Y
-P

S
N

H
3-

P
S

S
ili

ca

strepavidin
coated

B
ar

e-
P

S
C

O
O

-P
S

6%
B

-A
ct

3%
B

-A
ct

0%
B

-A
ct

B
S

A
-P

S

G
d 

(d
yn

es
/c

m
2 )

G
d 

(d
yn

es
/c

m
2 )

103

103

10–1 101 10310–1

30

60

90

0

(a) (b) (c)

2

0

4

6

8

10

10–1

Fig. 3.13 The dependence of F-actin microrheology on the surface chemistry of the polystyrene probes. Reprinted from
Biophys. J., 79, McGrath, J. L., Hartwig, J. H., & Kuo, S. C., The mechanics of F-actin microenvironments depend
on the chemistry of probing surfaces, 3258–66, Copyright (2000), with permission from The Biophysical Society.
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angle approaching 90 degrees at high frequency, like a Newtonian
fluid, probes with strong interactions to the F-actin produce phase an-
gles consistent with the expected scaling of the semiflexible polymer
high-frequency moduli, δ ∼ 50◦ ∼ tan–1[(3/4)(π/2)].

For probes that bind weakly to the F-actin network, the meas-
ured rheology is intermediate between that which one expects for the
solvent and a tightly entangled semiflexible polymer network. This
behavior is an indication that a shell of softer or depleted material
has formed around the probes (Levine and Lubensky, 2001), and
is discussed in more detail in Section 4.11.4. Similar to depletion,
a higher density of material may accumulate near the probe surface,
although this will appear as an increase in the effective probe size. Mi-
crorheology measurements in this case generally produce the correct
frequency response, but with an apparent modulus that is higher than
the true modulus. In other cases, discrete contact points between the
probes and material may occur, with depleted regions between these.
The probes are expected to report the correct frequency dependence
of the rheology, but with a lower apparent modulus (Van Citters et al.,
2006).

3.10.2 Microrheology without probes?

In the “tracer probe” microrheology that we have been consider-
ing, a material is seeded with colloidal particles. The dynamics of
these particles are used to measure the microrheology. Most often
these probes are particles which are added to the material of interest.
However, nothing prevents us from measuring the dynamics of the
material itself, for instance if it’s a concentrated emulsion or colloidal
suspension. Can the rheology be derived from these experiments with
the GSER?

Some of the first studies using light-scattering microrheology do
measure the dynamics of emulsions and suspensions (Mason and
Weitz, 1995; Mason et al., 1997b). As we can see for the dynam-
ics of concentrated emulsions in Fig. 3.14a, the droplets exhibit a
mean-squared displacement reminiscent of the Kelvin–Voigt model.
In fact, the Laplace-Transformed Kelvin–Voigt model (eqn 3.109)
is compared to the transformed data by the dashed line Fig. 3.14b,
matching the asymptotic solid and viscous limits. The difference
between the model and data are represented by the open symbols
and fit the power-law function s0.5 over about six decades. When
the Kelvin–Voigt model and power-law are converted to moduli,
they agree well with mechanical rheology. That comparison can be
seen in Fig. 3.14c.



128 Passive microrheology

10–7 10–5

10–15

10–16

(a) (b) (c)

10–14

10–13

10–3 10–1 101

〈Δ
r2 (

t)
〉 (

cm
2 )

t (sec)

102

103

104

105

106

100 101 102 103 104 105 106 107

s (sec–1)
G

(s
),

 Δ
G

(s
)(

dy
ne

s/
cm

2 )
˜

˜

102

103

104

105

106

10–1 100 101 102 103 104 105 106

ω (rad/s)

G
ʹ(ω

),
G

ʺ(ω
)(

dy
ne

s/
cm

2 )

Fig. 3.14 Dynamics of concentrated-monodisperse emulsion droplets (volume fraction φ = 0.65) measured by diffusing
wave spectroscopy. (a) The emulsion droplets’ mean-squared displacement and (b) its Laplace Transform (solid symbols).
(c) The storage and loss moduli derived from the light scattering are in good agreement with bulk rheology (symbols) in
the overlapping frequency range. Adapted with permission from Mason et al. (1997b), The Optical Society.

The agreement between bulk rheology and the rheology derived
from the emulsion droplet dynamics seems to violate one of the key
assumptions of our derivations in this chapter—that the medium
constitutes a continuum on the length scale of the probe particle.
In these cases, the probe particles are the material of interest. Ear-
lier studies of hard-sphere suspensions, the Stokes–Einstein relation
relating the short-time self-diffusivity Dss to the high-frequency
viscosity η′∞,

Dss(φ)
?∝ DkBT
3πaη′∞(φ)

, (3.157)

holds to within experimental accuracy across a wide range of vol-
ume fractions (Shikata and Pearson, 1993; Banchio et al., 1999),
but fails for dispersions in which particles interact by screened elec-
trostatic interactions (Horn et al., 2000). Such applications of the
Stokes–Einstein equation exploring the relation between diffusivity
and viscosity have a long history, indeed going back to studies of
atomic and molecular fluids, where the approximate validity of the
Stokes–Einstein formula for molecules was well known (Zwanzig and
Bixon, 1970).

So, caution must be exercised when the dynamics of the material
are interpreted using the GSER. Still, it can be seen as a potential in-
dex method of rheology, capable of detecting changes due to curing
or gelation, for instance. Such methods have been applied to indus-
trial rheology—the curing of paints and coatings, rheological changes
that accompany food processing (yogurt, cheese), cements, and sim-
ilar rheological changes in consumer-care products (Alexander and
Dalgleish, 2007; Moschakis, 2013).
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3.11 General limits of operation

The exact range of measurable moduli and time scales for passive
microrheology depends on the technique that is used. In the next
chapters, we will introduce the methods of multiple particle tracking
(Chapter 4) and light scattering microrheology (Chapter 5). There
are best practices and nuances for each experiment, but here it is
useful to consider a few general limits that apply to any experimental
passive microrheology method.

Passive microrheology relies on tracking the motion of particles
with respect to time to calculate the mean-squared displacement.
The range of time scales and displacements that are accessible with
each experimental method define its operating regime. There is a
lower time limit set by the MSD acquisition rate and an upper limit
determined by the total acquisition time of the ensemble average
mean-squared displacement. For example, using video microscopy
for particle tracking, the video acquisition frame rate f sets the mini-
mum time between video frames, τmin = 1/f , and thus the shortest lag
time for theMSD. In light scattering, the minimum lag time may be as
short as tens of nanoseconds—short enough that we may need to take
into consideration the particle and fluid inertia.

10

10
In light scattering microrheology, the

lower time limit τmin is determined under
most circumstances by the particle displace-
ment resolution, i.e., the time it takes a
particle to diffusive a given length, like 1 nm.
The exact value is determined by the scat-
tering geometry, probe scattering properties
(size, concentration), and other factors.

A more common
lower limit is ≈ 1 μs.

3.11.1 Minimum compliance

Consider the accuracy of the particle tracking and the minimum dis-
placement of the probe’s movement that can be detected. Let ε be the
lower resolution of the position such that the measured mean-squared
displacement

〈�r̂2(τ)〉 = 〈�x̂2(τ)〉 + 〈�ŷ2(τ)〉 + 〈�ẑ2(τ)〉 (3.158)

is given by the “true” mean-squared displacement with a minimum
value 2ε2 in each direction by

〈�x̂2(τ)〉 = kT
3πa

J(τ) + 2ε2. (3.159)

Then the minimum compliance Jmin(τ) must exceed

J(τ) >
6πaε2

kBT
. (3.160)

The minimum compliance is independent of the number of dimen-
sions D of the mean-squared displacement. For light scattering, D = 3,
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while particle tracking is most often performed with a 2D projection
of the probe displacement, so D = 2.

We can use eqn 3.160 to identify limits of purely viscous behavior,
where J(t) = t/η and purely elastic behavior, where Je = 1/Ge. Our
passive microrheology operating regime is set by the desire to unam-
biguously distinguish a sample in the two extreme limits of rheological
response—a viscous fluid or elastic solid—for τ ≥ τmin. Figure 3.15
illustrates this heuristic with three sets of MSD curves, corresponding
to three Newtonian fluids and three purely elastic solids.

In the first case (1) in Fig. 3.15, both MSD curves for the hypo-
thetical viscous fluid and elastic solid are above 〈�r2(τ)〉 > 2Dε2 for
τ > τmin. Over all lag times, the fluid can be unambiguously distin-
guished from the elastic solid. Any sample with complex viscoelastic
behavior between these limits could also be measured.

In case (2) of Fig. 3.15, the limit is reached wherein the particle
motion in the elastic solid cannot be distinguished from the mini-
mum displacement of the method being used. However, any sample
in which the creep compliance is above this line will be measurable.
When (3) is reached, however, there is a range of lag times for which
the displacement in the limiting viscous behavior falls below 2Dε2.
The measured MSD would be constant, then increase after cross-
ing 2Dε2. Such a cross-over would be smooth and continuous, and
thus the short-time or high-frequency response could be mistaken for
elasticity even for a sample that is, in reality, purely viscous (Savin
and Doyle, 2005).

11

11
Savin and Doyle’s (2005) data are

reproduced in Fig. 4.25.

Indeed, comparing eqn 3.118, the resulting curve
resembles the expected MSD for a Maxwell fluid.
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Fig. 3.15 Limits of the mean-
squared displacement.

Maximum viscosity and shear modulus

The general relation eqn 3.160 can be written for the limiting viscosity
of a Newtonian fluid,

ηmax =
kBTτmin

6πaε2
(3.161)

or the shear modulus amplitude,

|G∗(ω)|max ≈ kBT
6πaε2

. (3.162)

Using multiple particle tracking microrheology (Chapter 4) and
probe particles with diameter 2a = 1μm with a typical particle track-
ing error of ε ≈ 10 nm, the calculated limits above are |G∗(ω)| ≈
5Pa (or Jmin ≈ 0.2 Pa–1) and ηmax ≈ 150 mPa · s. But eqn 3.160
also gives the extent to which this range of moduli can be changed
by selecting different probe particle sizes. Smaller probes can be used
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to increase the upper limits of modulus or viscosity, provided that
the continuum approximation of the (generalized) Stokes equation
is still satisfied, as Cohen and Weihs (2010) nicely demonstrate in
microrheology studies of undiluted, viscous honey samples.

Operating diagram

In Fig. 3.16, we show the operating range of microrheology mea-
surements based on eqns 3.161 and 3.162 in terms of the particle
mean-squared displacement and time for three passive microrheology
experiments: Multiple particle tracking by video microscopy (MPT),
light scattering by diffusing wave spectroscopy (DWS), and single
particle laser tracking (LT). Because a common probe particle di-
ameter in microrheology measurements is on the order of 1 μm, we
use this probe size to calculate the equivalent values of compliance
J(t), viscosity of a Newtonian fluid η, and equilibrium modulus G0

of an elastic solid. Again, these limits change with probe size and
depend on other experimental factors. For instance, DWS microrhe-
ology depends on the scattering geometry and probe concentration.
See Chapter 5 for a discussion of these and other details.

Each operating range is bound by a practical upper limit of time
scale or lower limit of frequency characterized by the maximumMSD
lag time τmax. If it was certain that the fluid was Newtonian, one
could propose to wait an indefinite time for the particles to move a
measurable distance. But in practice, it is usually not feasible to track
materials over such long times—small amounts of convection could
obscure the particles’ diffusive motion, or macroscopic vibration and
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sive microrheology using multiple
particle tracking (MPT), diffusing
wave spectroscopy (DWS) and laser
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thermal expansion could contribute to the measured displacement.
And there is the overall acquisition time of the measurement to con-
sider; as we discuss later, materials with a rheology that changes
with time, during a hydrogelation reaction, for instance, necessitate
acquisition times that ensure the ensemble averaged mean-squared
displacement approximates a stationary property. One exception is
the use of multispeckle imaging discussed in Section 5.7.6.

Typical sample volumes are also indicated in Fig. 3.16. Taken to-
gether, the volumes, probe displacements, and time scales identify
particular classes of problems amenable to microrheology:

(1) At high compliances, multiple particle tracking is suited to low
viscosity samples and the incipient rheology of biomaterial
hydrogelators.

(2) At lower compliances and short time scales, diffusing wave
spectroscopy can access the terminal relaxation of polymer
solutions, networks, and gels. With extended time scales, it
can be used to characterize the relaxation time of polymer
solutions.

(3) Screening experiments that take advantage of the low vol-
ume requirements, and quick mass and heat transfer in
samples are.

These and other applications are discussed throughout the text as
application notes and in Chapter 10.

With the GSER and our understanding of some of the strengths
and limitations of passive microrheology, the next two chapters will
focus on the experimental methods using microscopy and particle
tracking (Chapter 4) and light scattering (Chapter 5).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXERCISES

(3.1) Particle in an elastic medium. Consider the solution to the
equation of motion, (eqn 3.1)

MpV̇(t) = f –
∫ t

–∞
ζ (t – t′)V(t′)dt′, (3.163)

in a viscous fluid in the absence of inertia is

V = F/ζ , (3.164)
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where the resistance to motion is represented by a constant
memory function (friction coefficient), ζ = 6πaη. The velocity
is a constant that is proportional to ζ . Since ζ is related to the
viscosity η, a higher viscosity means that the particle translates
more slowly. Show that the solution to the equation of motion
for a purely elastic material is

�X = f/κ, (3.165)

where κ = 6πaG.
(3.2) Green-Kubo formulas. Various Green-Kubo formulas relate

deterministic transport coefficients to autocorrelation func-
tions of stochastic quantities. One step in the derivation of the
GSER,

〈v(0)ṽ(ω)〉 = –ω2

6
〈�r̃2(ω)〉, (3.166)

is follows from one such formula.

(a) Show that eq 3.166 is the Fourier-Laplace Transform of
the integral

D = (1/3)
∫ ∞

0
〈v(0) · v(t)〉dt, (3.167)

where 〈�r2(t)〉 = 6Dt.

(b) Next, derive eqn 3.167 by starting with the formula for
displacement

�r(t) =
∫ t

0
v(τ)dτ (3.168)

by noting that the scalar mean-squared displacement is
then

〈�r2(t)〉 =
∫ t

0

∫ t

0
〈v(τ1) · v(τ2)〉dτ1dτ2. (3.169)

(3.3) Fluctuation-dissipation. A colloidal particle in water is sub-
ject to an impulsive force with magnitude f0. In this problem,
we will consider an energy balance on the particle.

(a) As the particle moves after the impulse is applied, how
much workW is done on the particle by the surrounding
fluid? What is the rate of work Ẇ done by the fluid?
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(b) The rate of work done by the fluid on the particle rep-
resents the rate of energy dissipation, Ẇout. An energy
balance on the particle at equilibrium would yield

Ẇin + Ẇout = 0 (3.170)

(by convention, work done on the particle is negative
and work done by the particle is positive). The impul-
sive force gives the particle a kinetic energy 1

2mv
2. Thus,

the rate of work done on the particle can be estimated as
Ẇin = 1

2mv
2/τ , where τ is the time over which the force

f0 acts on the particle (alternatively, Ẇin = 1
2mv

2δ(t),
where δ(t) is the Dirac delta function). At equilibrium,
the average kinetic energy should be 1

2kT by the equipar-
tition theorem. Show that thermal equilibrium establishes
a relationship between the force f0 and the dissipation of
energy via friction. This is (roughly) a statement of the
fluctuation-dissipation theorem.

(c) Use the velocity autocorrelation and equipartition to show
that the magnitude of the Brownian force is given by

F = 12πaηkT . (3.171)




