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Large Language Models as Tools for Science  
– CBI 5th Annual Summer Retreat, July 30, 2025
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What happens?
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We input text — a “prompt”

The model responds with text

The quality of the response can 
depend strongly on the prompt

The response is never exactly the same
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GPU – Graphics Processing Unit
6
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GPT = Generative Pre-trained Transformer
LLM is an auto-regressive language model that uses an optimized transformer architecture

Encoder Decoder



E. M. Furst—Chemical & Biomolecular Engineering, University of Delaware—furst@udel.edu 8

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. 
Gomez, Ł. Kaiser, and I. Polosukhin, Attention Is All You 
Need, in Advances in Neural Information Processing 
Systems, Vol. 30 (Curran Associates, Long Beach, CA, USA, 
2017), pp. 261–272.

arXiv:1706.03762

Attention Is All 
You Need, 2017

P. J. Liu et al., “Generating Wikipedia by 
Summarizing Long Sequences,” presented at 
the ICLR, 2018. Accessed: May 10, 2025. 
[Online]. Available: https://openreview.net/
pdf?id=Hyg0vbWC-

First decoder-only GPT

followed by the…
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A logit is the raw…

out…

Given a sequence of tokens
(characters, words, bigrams, 
or subwords)

Predict the next probable token

… put… of… a… ma… chine… 

learn ing mo del, typic ally be fore 

apply ing a trans form a tion like 

the soft max func tion.

Which becomes part of the 
next token prediction, etc.

(It is auto-regressive)

 Probabilistic but causal calculation of the next token
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“Knowledge” is an emergent property
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Example inspired by Andrej Karpathy, Intro to Large Language Models
https://www.youtube.com/watch?v=zjkBMFhNj_g
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Probability of next token (SoftMax)

Given vector 
of logits

Boltzmann weighting

“Temperature” hyperscaling parameterQuery, Key, and 
Value matrices

causality 
(for text)

A. Vaswani, et al., Attention Is All You Need, in Advances in 
Neural Information Processing Systems, Vol. 30 (Curran 
Associates, Long Beach, CA, USA, 2017), pp. 261–272. Stochastic behavior!
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Visualizing a GPT
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Brendan Bycroft – https://bbycroft.net/llm

NanoGPT – Andrej Karpathy
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GPT-3 (175B) ~175 billion parameters (350GB)
trained on O(10TB) data (the web)

Given an input token representation, 

Learnable weight matrices

or

• Hidden size: 12,288
• Number of layers: 96
• Number of attention heads: 96
• Vocabulary size: ~50,000
• Feedforward network expansion factor: 4x

GPT-4 and 4o sizes not released, but estimates at 1012 – 1014 parameters

ca. June 2020

each of size

the embedding
dimension
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Training model weights
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Parameters (model weights) adjusted to better fit the model
Instead of sum of squared residuals, use cross-entropy loss
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Cost (compute & energy) is in the model training
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~10 TB text
webcrawl, 
Wikipedia, 
Project 
Gutenberg, 
ArXiv, Stack 
Exchange… 
(llama)

Llama 3.1 8B –1.46 million GPU hours
Llama 3.1 70B – 7.0 million GPU hours
Llama 3.1 405B – 30.84 million GPU hours

(approximately 440,000 petaFLOP-days for training)

https://huggingface.co/blog/llama31
https://ollama.com/library/llama3.1

8B model: 4.9 GB
70B model: 43 GB
405B model: 243 GB

Llama 3.1 (Meta)

+ fine-tuning
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Running models is relatively inexpensive

running in ollama locally
with llama3 8B (4.7 GB)

Macbook Pro M3, 12 cores (2023)
18GB RAM, 18 core GPU

-rwxr-xr-x@ 1 furst  staff    51M Jan 16 11:37 ollama*

https://ollama.com/
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Demo: running models locally
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llama3 8B (4.7 GB)
running in ollama

Macbook Pro M3, 12 cores (2023)
18GB RAM, 18 core GPU

https://ollama.com/
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LLM uses in science and engineering
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GPTs and LLMs are transformative technologies, analogous to the advent 
of the electronic, programmable digital computer

Scientists and engineers rapidly adopted digital 
computers to numerically solve difficult problems

Blaszczyk, 2014

UD’s Bendix G-15-D, ca. 1958
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Since 1972 (and earlier)…
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or… 

assembly  
FORTRAN 
C 
Matlab 
Python 
Javascript, Pascal, Lisp, ALGOL 60, 
BAL, JCL, Smalltalk, PL/I, Logo…
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suddenly, 
today…
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natural language
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Solving non-trivial, but adjacent problems
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Jason Conradt

Use ChatGPT to help 
write Python code for 
binarization and 
Voronoi tessellation…
in a day instead of a 
week +

Minimum color Voronoi representation 
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Retrieval Augmented Generation (RAG)
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query
vector

top-k 
chunks

documents

e.g. cosine-
similarity

all-mpnet-base-v2 llama3.1:8B
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See https://docs.llamaindex.ai/

RAG query in 
~40 lines of code
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Possible LLM pitfalls and problems
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Hallucinations

LLMs sometimes generate plausible-sounding but factually incorrect or 
entirely fabricated information

Misalignment

The model’s output may not reflect user intent or ethical/social 
expectations, especially in nuanced or sensitive contexts.

Bias and Stereotypes

LLMs can amplify societal biases, especially around race, gender, or culture, 
due to patterns in their training data.

Overconfidence

LLMs often present answers in a confident tone regardless of uncertainty, 
leading users to overtrust incorrect outputs.

Context Loss

When prompts are too long or complex, LLMs may forget or ignore earlier 
context, causing incoherent or inconsistent responses.
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In our uses…
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Hallucinated Code or APIs

Suggests functions, libraries, or syntax that don’t exist

Misuse of Retrieved Content (RAG)

Pulls in irrelevant or misunderstood snippets, leading to wrong answers

Inconsistent Formatting

Breaks expected structure (e.g. JSON, YAML, code blocks) even in repeated tasks

Overconfident Errors

Gives incorrect results or logic with a confident tone

Context Limitations

Forgets earlier input in long prompts or complex workflows
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“…all people using these systems should be informed 
and constantly reminded that their requests could lead 
to error-prone, fabricated, or otherwise misaligned 
responses* as well as potentially dangerous actions in the 
case of AI agents.” 

Why AI Chatbots Lie to Us
Melanie Mitchell, Science, July 26, 2025
https://doi.org/10.1126/science.aea3922

* may also apply to faculty
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"Programming is a skill best acquired by practice and example rather than from books.”
– Alan Turing, Programmers' Handbook for Manchester Electronic Computer Mark II, 1951
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Learn by doing – hack on an LLM
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https://www.youtube.com/watch?v=kCc8FmEb1nY

~300 lines of Python
Runs on CPU or GPU
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https://furst.group

CHEG667-013 
handouts!
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Concluding remarks
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1. How LLMs work
2. Running LLMs locally
3. Two (or three) LLM uses

Solving adjacent problems in our science: 
coding, data cleaning, formatting

New ways to build computational tools with computer-
human interactions through natural language

RAG (search, information retrieval) that uses the 
encoding / embedding power of transformers


