CHEG 667-013 - CHEMICAL ENGINEERING WITH COMPUTERS
Department of Chemical and Biomolecular Engineering
University of Delaware

Spring 2025

COMMAND LINE INTERFACE PART II

Key ideas today:

Continue exploring the Linux (or Unix) command line interface.

Key goals:

Learn how to manipulate and edit files, file lists, and input / output. Learn about the shell and
some of its features, including scripting.

We continue on our quest to learn about the command line. There is a lot to learn and the
commands are somewhat cryptic. The best way to get comfortable with the command line is to
use it. Look around the system. You can’t really break anything. You generally don’t have the
permissions to edit, move, or delete system files.

That said, remember: there is no undo when it comes to your own files. A good practice is to make
backup copies of important files!

1 System information and managing processes

There are several useful programs for seeing who or what is running on a machine.

e who — display who is on the system

w — display who is on the system and what they are doing

e whoami — display the current user ID

e ps — process status — information about processes on the system

e top — display sorted information about processes (like activity monitor)
e uptime — show how long system has been running

ps returns important information like the process id, a unique number assigned to every running
process. The command has a few options, and a somewhat strange syntax. Most systems will
interpret ps aux as a command that lists all running processes on a system.

Exercise 1: Try out each of the commands above! ‘

Killing a process

If you have a process that seems to be hanging, like a program with a buggy infinite loop (maybe
top shows a lot of CPU use and the fan is spinning loudly), you can terminate it with the kill
command. You first have to find the process id using ps. Then type:

Command Line Interface Part II CHEG667-013

eflj@snaut:~$ kill pid

2 Reading files

We’ve already used the cat command to print a file. Several other programs are useful for scanning
through files. These include:

e cat — print a file
e more — page through a file one screen at a time
e less — “Opposite of more.” (macOS more actually runs less.)

e grep — file pattern searcher

Exercise 2: Make a directory listing of the root file system with 1s -1R / > 1sR_filesystem
.txt. Then page through the file using less. Move up and down. Can you find a particular
file using a search?

Of the programs above, grep is a little different. It is used to find files with matching strings. It’s
basic use looks something like this:

eflj@snaut:”/chegb67$ grep 'string' filename

which will look for string in the file filename.

More help with less

Incidentally, in addition to the man pages, many commands have built-in help. Try running less
--help. This also shows us that some options are proceeded by a long dash. You might also try
less -7.

3 Pipes and redirects

Pipes and redirects enable you to control the flow of information to and from processes.
e | — a pipe
e > — redirect output to a file (this will always overwrite the file)
e >> — redirect and append output to a file
e < — use a file as input

One of the design philosophies of Unix centers around providing small, focused program tools that
can be used together. Pipes send the output of one program to the input of another. Try it! Type:

furst@snaut:~$ ps aux | less

Command Line Interface Part II CHEG667-013

The ps aux command will generate a long list of processes that scroll past quickly. By “piping”
the command to less, it is easier to page through the output.

In Excercise 2, we redirected the output of 1s to a file.

4 Editing files in the terminal

Most of the time, we can use an editor or development environment to write code. However,
sometimes we need to write or edit a file in the terminal, including configuration files. There are a
few options:!

e vi — “a programmers text editor”
e nano — a “small and friendly editor”
e emacs — Emacs is more than an editor.

e ed — line editor for Yoda-level Jedi editing.

Exercise 3: Using one of the editors above, type in the following short ¢ program:

#include <stdio.h>
int main() {
printf(”hello, world”);

}

save this file as hello.c.

There is a bit of a learning curve for each of these editors, but they can be quite useful. Most users
will choose vi or nano. The “standard editor” ed is found on almost every machine and can be a
good fallback if you need to repair a system or make a quick edit.

C programming side quest

Use the ¢ compiler to create an executable program from our hello.c code:

furst@snaut:~$ cc hello.c
furst@snaut:~/foobar$ 1s
a.out* hello.c

Now we have an executable file a.out. Run it by typing ./a.out. 2

5 Controlling the terminal output

Several control characters are used to control the terminal and its output:
e “c — stop execution (halt a program or clear a terminal line)

e “s — pause output

!Some people have strong feelings about editors. See https://en.wikipedia.org/wiki/Editor_war.
2A right of passage!

https://en.wikipedia.org/wiki/Editor_war

Command Line Interface Part II CHEG667-013

e ~q — continue output
e “d — end of transmission / end of file

Here, the carat character ~ stands for control. You might use control-c the most.

6 Suspending and backgrounding processes

Sometimes you need to pause what you're doing (like editing a file) to perform another task. You
can have multiple terminal windows (or tabs) open, but if you're working on a remote machine, it
may be inconvenient to open multiple sessions. Suspending (pausing) execution is one option. In
other cases, a program may take a while to run, and its output is written to files, not the terminal.
In that case, running it in the background is a good option.

e "z —suspend an active process

e fg — foreground a suspended or backgrounded process

e jobs — display status of jobs in the current session (not all shells)
e & — used after a command, this runs a process in the background

Type cat and return. Then type ~z.

furst@snaut:~$ cat
~Z
[1]+ Stopped cat

The cat command was reading from the standard input (the keyboard). When we typed control-z,
it suspended the process. Type ps and you should still see it listed as an active process. We can
reactivate it using the command fg:

furst@snaut:~$ fg
cat

It tells us that the cat command is active again. (Nothing much will happen. Try typing a few
lines. What do you see and why?)

Control-z is useful when you are editing a file and need to return to the command line (although
some editors have the ability to open a new shell). Use vi or nano to open your hello.c file. Then
hit control-z:

furst@snaut:~/foobar$ vi hello.c

[1]+ Stopped vi hello.c
furst@snaut:~/foobar$

Now do some other work. Compile the program:

furst@anisotropic:”/foobar$ cc hello.c

Command Line Interface Part II CHEG667-013

You should see a new file called a.out:

furst@anisotropic:~/foobar$ 1ls -1

total 20
-rwxrwxr-x 1 furst furst 15960 Mar 31 21:41 a.outx*
-rw-rw-r-- 1 furst furst 65 Mar 31 21:41 hello.c

This is the executable or binary file compiled from our short ¢ program. Run it by typing ./a.out.

Now return to the editor. Type:

furst@anisotropic:~/foobar$ fg
vi hello.c

(This will put you back in the editor. You probably won’t see these lines until you finally quit the
editor, unless you're using ed.)

Warning! Any process running in the background will be terminated if you close the terminal
session. You can keep a process running by using screen or nohup.

7 More on files: wildcards and matching

In Part I, we used mv, cp, and rm, to manipulate files. These commands accepted the filename. We
can select more than one file to act on by using wildcards:

e * — match a string of characters
e ? — match one character

For example, compare the output for the command

eflj@snaut:"$ 1ls /etc/dev

with

eflj@snaut:"$ 1ls /etc/dev ttyx*

What files are listed in the second example? Now try:

efl1j@snaut:"$ 1ls /etc/dev tty?

What is the difference?

Exercise 4: Practice listing certain files. Can you list all of the /dev/tty files that begin
with tty1? How about all of the programs in /usr/bin that begin with the letter p? Try some
other letters!

Command Line Interface Part II CHEG667-013

Exercise 5: Count the number of files that begin with the letter p in /usr/bin by typing
1s /usr/bin/px | wc -1. What is the program wc? (RTFM!)

Delete all files, recursively

Clear out a directory structure for deletion using the command

efl1j@snaut:"$ rm -r *

Be careful! Remember, there is no undo!

8 Making a backup of a directory side quest

What if I have a directory ~/foobar with important files? I want to make a copy of that directory.
Can I use the following command?

efl1j@snaut:"$ cp foobar foobar_backup

Why or why not? Try it!

All right, the copy command will not act on a directory. However, we can copy all of the directory
contents to a new directory using the recursion option, cp -r:

efl1j@snaut:"$ cp -r foobar foobar_backup

Now we should have a backup of foobar with all of the files (and directories). Here’s the original
directory in my case:

furst@snaut:”$ 1s -1 foobar

total 20
-rwxrwxr-x 1 furst furst 15960 Mar 31 13:52 a.outx*
-rw-rw-r-- 1 furst furst 61 Mar 31 13:52 hello.c

and here is the backup:

furst@snaut:”$ 1ls -1 foobar_backup/

total 20
—rwxrwxr-x 1 furst furst 15960 Mar 31 18:07 a.out*
-rw-rw-r-- 1 furst furst 61 Mar 31 18:07 hello.c

Something interesting happened: when we copy the files, they have new modification times. This
might be undesirable for a backup. But I can preserve the old modification times with the -p
option:

eflj@snaut:”$ cp -rp foobar foobar_backup

Command Line Interface Part II CHEG667-013

Now the copies of those files should preserve their original modification times. This holds for a
number of other file transfer and copying commands, like rsync and sftp.

9 Shell history

Typing in a command again and again can be a drag. Luckily, most shells save a history of previous
commands. You can refer back to this history and even execute previous commands.

e history — print the shell command history
e ! and !! — execute a previous command or the most recent command

Type history (or maybe history | less):

eflj@snaut:~$ history
2013 1s

2014 1less weather.sh
2015 man whoami

2016 whoami

2017 man history
2018 history

Now, if I type !less (“bang less”),

efl1j@snaut:"$!less

it will execute the last less instruction in my command history (in this case, less weather.sh).
This is useful when commands are long and have a lot of options or if you need to repeatedly refer
back to a text file, like the example here.

Typing !! (“bang-bang”) will execute the last command in the history. This is also handy!

10 Shell programming

The shell is the program that is managing our input and output in the terminal. There are several
shell programs to choose from including the Bourne shell sh, C shell csh, korn shell ksh, Z shell
zsh, but bash is a common default.

We can also write scripts in the shell. These may be used to run other programs or a combination
of tasks. Programming the shell is a subject in itself, but a powerful tool. Here’s one (perhaps
useful) example to play with.

Type in the following and save it as weather.sh:

#!/bin/bash

weather.sh [-s STATE] [ZONE]

city weather by zone with state option
Version 2025 APR 01

H OH O H H

zones at https://www.weather.gov/pimar/PubZone

Command Line Interface Part II CHEG667-013

usage () { echo "Usage: $0 [-s STATE] [ZONE]" 1>&2; exit 1; }
defaults
STATE="de"
ZONE="001"

while getopts "s:" flag

do
case "${flag}" in
s) STATE=${O0PTARG};;
*x) usage;;
esac
done

shift $((OPTIND -1))

more than one option, so do not run
if ["$#" -ge 2]; then
usage
else
if ["$#" -eq 1]; then
Use a regex to check if the argument is exactly three =zone
digits
if [[! "$1" =~ ~[0-91{3}% 1]; then
usage
else
ZONE=$@

curl command to get the weather forecast
curl -s "https://tgftp.nws.noaa.gov/data/forecasts/zone/${STATE}/${STATE}
z${ZONE}. txt"

Now change the permissions to make this script executable:

efl1j@snaut:”$ chmod u+x weather.sh

You now have a short script that downloads the latest weather forecast!®> Who needs the web!

The shell script above shows how you can write your own Unix utility. It processes command
options like the programs we’ve learned about and provides some user information, including fairly
reasonable error processing.

Exercise 6: Try a few different states and zones. (You’ll have to look them up). Redirect
each report to a unique file. Can you concatenate these into one large file?

3macOS Easter egg. Type: ./weather.sh | tail -n +15 | say

	1 System information and managing processes
	2 Reading files
	3 Pipes and redirects
	4 Editing files in the terminal
	5 Controlling the terminal output
	6 Suspending and backgrounding processes
	7 More on files: wildcards and matching
	8 Making a backup of a directory side quest
	9 Shell history
	10 Shell programming

