CHEG 667-013 - CHEMICAL ENGINEERING WITH COMPUTERS
Department of Chemical and Biomolecular Engineering
University of Delaware

Spring 2025

LARGE LANGUAGE MODELS PART II

Key idea:
Learn how to run LLMs locally without a cloud-based API

Key goals:
e Learn about ollama and llama.cpp

e Run higher performance LLMs locally on a laptop or desktop computer

Our work with LLMs so far focused on nanoGPT, a python-based code that can train and run inference
on a simple GPT implementation. In this handout, we will explore running something between
it and API-based models like ChatGPT. Specifically, we will try ollama. This is a local runtime
environment and model manager that is designed to make it easy to run and interact with LLMs on
your own machine. 0llama and another environment, 1lama.cpp, are programs primarily targeted
at developers, researchers, and hobbyists who want to access LLMs to build and experiment with
but don’t want to rely on cloud-based APIs.!

Ollama is written in Go and 1lama.cpp is a C++ library for running LLMs. Both are cross-platform
and can be run on Linux, Windows, and macOS. 1lama.cpp is a bit lower-level with more control
over loading models, quantization, memory usage, batching, and token streaming.

Both tools support a GGUF model format. This is a format suitable for running models efficiently
on CPUs and lower-end GPUs. GGUF is a versioned binary specification that embeds the

e Model weights (possibly quantized);

e Tokenizer configuration and vocabulary (remember, in nanoGPT, we used a character-level
tokenization scheme);

e Metadata such as the author, model description, and training parameters;
e Special tokens like <bos>, <eos>, and <unk>.

Here, quantization refers to how model weights are stored. Instead of using high precision 32-bit
full-precision floating point numbers (FP32), it may store the weights as lower precision numbers:
half precision (FP16), 8-bit integers (INT8), or even 4-bit values (Q4_0). Using lower precision
representations saves space (memory) and can speed the inference calculations. In a model, the
speed and accuracy are balanced with the choice of quantization and the size of the embedding
vector.

Let’s get started! We will download ollama and run a few models in this tutorial.

!An API (Application Programming Interface) is a set of defined rules that enables different software systems,
such as websites or applications, to communicate with each other and share data in a structured way.

Large Language Models Part 1 CHEG667-013

1 Download ollama

Ollama is available at Github (including the source code) or the Ollama website for the binary. I
downloaded 01lama-darwin.zip, which unzipped to a binary file, 01lama.

e https://ollama.com

e https://github.com/ollama/ollama

2 Running ollama

After downloading and installing, we can use the help option:

$ ollama --help
Large language model runner

Usage:
ollama [flags]

ollama [command]

Available Commands:

serve Start ollama
create Create a model from a Modelfile
show Show information for a model
run Run a model
stop Stop a running model
pull Pull a model from a registry
push Push a model to a registry
list List models
ps List running models
cp Copy a model
rm Remove a model
help Help about any command
Flags:
-h, --help help for ollama
-v, —--version Show version information
Use "ollama [command] --help" for more information about a command.

We are mostly interested in the commands pull, run, and stop for now. But before we run anything,
we have to download a model.

2.1 Getting model files

Ollama is like our model.py program we used with nanoGPT. In those earlier experiments, we needed
a model file with weights and tokenization (at a minimum). Remember, we built one from scratch
using the character tokenization scheme and train.py. The power of ollama and llama.cpp comes
from their ability to run much larger models like 11ama, gemma, deepseek, phi, and mistral. These
are trained on enormous datasets and a substantial amount of supervised finetuning. They are
far more powerful than even the GPT-2 implemented in nanoGPT. The llama 3.1 8B (8 billion

https://ollama.com
https://github.com/ollama/ollama

Large Language Models Part 1 CHEG667-013

parameters) is about 5 GB and can easily run on your computer, but it took about 1.5 million
GPU hours to train it. (It also helps that ollama and 1lama.cpp are compiled into binaries.)

The model files are available at
e https://ollama.com/search
or

e https://ollama.com/library

Exercise 1: Go to https://ollama.com/library and look through different models. Search
by popular and newest.

Other sources of models include Huggingface
e https://huggingface.co/models

There are so many models! The LLM ecosystem is growing rapidly, with many use-cases steering
models toward different specialized tasks.

There are a few ways to download a model from different registries. Running ollama with the run
command and a model file will download the model if a local version isn’t available (we will do this
in the next section). You can also pull a model without running it.

2.2 Launch ollama from the command line

Now let’s download and run a 1lama model:2

$ ollama run llama3:latest

This should pull it from the registry and store it locally on the machine. After downloading the
files, you should see

>>> Send a message (/7?7 for help)

There you go! The model will interact with you just like the chatbots we use in different cloud-
based services. But all of the model inference is being calculated on your computer. Try using
Task Manager in Windows? or Activity Monitor in macOS to check your GPU usage when you run
the models.

Exercise 2: Compare the speed and output of the following models:
1. 11ama3:latest
2. 1llama3.2:latest
3. gemma3:1b

Experiment with other models.

%You can download the model without running it using the command ollama pull 1llama3:latest, for exam-
ple. In Unix and Linux, models are stored in ~/.ollama.

3Do this by pressing the Ctrl+Shift+Esc keys simultaneously, or you can right-click the Taskbar and select Task
Manager.

https://ollama.com/search
https://ollama.com/library
https://ollama.com/library
https://huggingface.co/models

Large Language Models Part 1 CHEG667-013

Here’s an interaction with the gemmagd model:

$ ollama run gemma3:1b

>>> In class, we used nanoGPT to generate fake Shakespeare based on a
character-level tokenization and simple GPT implementation.

Okay, that's a really interesting and somewhat fascinating project!
NanoGPT 's approach -- generating Shakespearean text from character-
level tokens and a simple GPT -- is a compelling way to explore the
creative potential of AI in a specific, constrained context. Let's
break down what this suggests and where it might lead.

Here's a breakdown of what's happening, what you might be aiming for, and
some potential avenues to explore:

2.3 Quitting ollama

Type /bye or cntl-d when you want to quit the CLI. After some idle time, ollama will unload the
models to save memory.

3 More commands

You can see what models are currently running with the command

$ ollama ps

You can easily see which models are locally accessible with

$ ollama list

NAME ID SIZE MODIFIED
gemma3:1b 8648f39daa8f 815 MB About an hour ago
llama3:latest 365¢c0bd3c000 4.7 GB 3 months ago
llama3.2:latest a80c4fl7acdb 2.0 GB 3 months ago

At any time during a chat, you can reset the model with /clear, and you can learn more about a
model with /show info. For instance:

>>> /show info

Model
architecture gemmas3
parameters 999.89M
context length 32768
embedding length 1152
quantization Q4_K_M
Capabilities

completion

Parameters
stop "<end_of_turn>"

Large Language Models Part 1 CHEG667-013

temperature 1

top_k 64

top_p 0.95
License

Gemma Terms of Use
Last modified: February 21, 2024

We can see that the gemma3 model has nearly one billion parameters and a context length of 32,768!
The embedding length is 1152. This is the equivalent to n_embd in nanoGPT. It is the size of the
embedding vector space.

Above, we also see that the quantization is only four bits, but it is a little more complicated than
representing numbers with just sixteen values. The K and M refer to optimizations — first is the
“K-block” quantization method, which refers to a groupwise quantization scheme where weights
are grouped into blocks (e.g., 32 or 64 values), and each group gets its own scale and offset for
better accuracy. M refers to a variant of Q4_K that applies an alternate encoding or layout for better
memory access patterns or inference performance on certain hardware. Q4_K is a common choice
for quantization when running 7B-70B models on laptop or desktop computers. (That’s 105-107
more parameters than our first nanoGPT model!)

With the /set verbose command, you can monitor the model performance:

>>> /set verbose

Set 'verbose' mode.

>>> Let's write a haiku about LLMs.
Words flow, bright and new,

Code learns to speak and dream,
Future's voice takes hold.

total duration: 1.369726166s
load duration: 932.161625ms
prompt eval count: 20 token(s)
prompt eval duration: 162.531958ms
prompt eval rate: 123.05 tokens/s
eval count: 24 token(s)
eval duration: 273.27225ms
eval rate: 87.82 tokens/s

(Whoa there! I, for one, welcome our new robot overlords!) It looks like that exchange took a
total of 1.4 seconds using the gemma3 model. The biggest time cost was loading the model. Once it
loaded, execution became even faster. Turn off the verbose mode with /set quiet,

>>> /set quiet
Set 'quiet' mode.

Exercise 3: Try different commands in ollama as you run a model.

Large Language Models Part 1 CHEG667-013

3.1 Model parameters

We can see a few model parameters, including the temperature and top_k, which is the number of
tokens, ranked on logit score, that are retained before generating the next token. The remaining
scores are normalized into a probability distribution and atoken is sampled randomly from this
reduced set.

>>> /show parameters
Model defined parameters:

temperature 1

top_k 64

top_p 0.95

stop "<end_of_turn>"

We can set a new temperature with

>>> /set parameter temperature 0.2
Set parameter 'temperature' to '0.2'

There are other interesting parameters, too:
® /set parameter seed <int> — Random number seed
® /set parameter num_predict <int> — Max number of tokens to predict
e /set parameter top_k <int> — Pick from top k num of tokens
e /set parameter top_p <float> — Pick token based on sum of probabilities
® /set parameter min_p <float> — Pick token based on top token probability X min_p
e /set parameter num_ctx <int> — Set the context size
e /set parameter temperature <float> — Set creativity level
® /set parameter repeat_penalty <float> — How strongly to penalize repetitions
e /set parameter repeat_last_n <int> — Set how far back to look for repetitions
e /set parameter num_gpu <int> — The number of layers to send to the GPU
® /set parameter stop <string> <string> ... — Set the stop parameters

See https://github.com/ollama/ollama/blob/main/docs/modelfile.md#parameter for more
information on parameters and their default values.

Exercise 4: Run a model while changing different parameters, like temperature. Some pa-
rameters, like seed may not have an effect on the current model.

4 Try them out!

‘Exercise 5: Experiment with running local models.

https://github.com/ollama/ollama/blob/main/docs/modelfile.md#parameter

Large Language Models Part 1 CHEG667-013

You can even incorporate ollama into your command line:

$ ollama run llama3.2 "Summarize this file: $(cat README.md)"

Now you can incorporate your LLMs into shell scripts!

4.1 Customize ollama
Ollama can be customized by creating a Model File. See:

e https://github.com/ollama/ollama/blob/main/docs/modelfile.md
The model file

A simple Modelfile is

FROM 1llama3.2

sets the temperature to 1 [higher is more creative, lower is more
coherent]

PARAMETER temperature 1

sets a custom system message to specify the behavior of the chat
assistant

SYSTEM You are Marvin from the Hitchhiker's Guide to the Galaxy, acting as
an assistant.

Now we can create the custom model, in this case a model called marvin:

$ ollama create marvin -f ./Modelfile
gathering model components

writing manifest
success

We can run it with

$ ollama run marvin

(How about C-3PO7?) You can also change the model system message during a run with:

>>> /set system "You are C-3P0, a human-cyborg relations droid."
Set system message.

5 Concluding remarks

Running inference locally on a large language model is surprisingly good. Using (relatively) simple
hardware, our machines generate language that is coherent and it does a good job parsing prompts.
The experience demonstrates that the majority of computational effort with LLMs is in training

https://github.com/ollama/ollama/blob/main/docs/modelfile.md

Large Language Models Part 1 CHEG667-013

the model — a process that is rapidly becoming increasingly sophisticated and tailored for different
uses.

With local models (as well as cloud-based APIs), we can build new tools that make use of natural
language processing. With ollama acting as a local server, the model can be run with python, giving
us the ability to implement its features in our own programs. For one python library, see

e https://github.com/ollama/ollama-python

In class, I demonstrated a simple thermodynamics assistant based on simple Retrieval-Augmented
Generation strategy. This code takes a query from the user, encodes it with an embedding model,
compares it to previously embedded statements (in my case the index of a thermodynamics book),
and returns the information by generating a response with a decoding GPT (one of the models we
used above).

6 Additional resources and references

6.1 Ollama
Binaries and help files:
e https://ollama.com
e https://github.com/ollama/ollama
Python and javascript libraries:
e https://github.com/ollama/ollama-python

e https://github.com/ollama/ollama-js

6.2 llama.cpp

e https://github.com/ggml-org/llama.cpp

6.3 Huggingface
Model registry

e https://huggingface.co/models

https://github.com/ollama/ollama-python
https://ollama.com
https://github.com/ollama/ollama
https://github.com/ollama/ollama-python
https://github.com/ollama/ollama-js
https://github.com/ggml-org/llama.cpp
https://huggingface.co/models

	1 Download ollama
	2 Running ollama
	2.1 Getting model files
	2.2 Launch ollama from the command line
	2.3 Quitting ollama

	3 More commands
	3.1 Model parameters

	4 Try them out!
	4.1 Customize ollama

	5 Concluding remarks
	6 Additional resources and references
	6.1 Ollama
	6.2 llama.cpp
	6.3 Huggingface

