
E R I C M . F U R S T

PA R T I C L E T R A C K I N G
W I T H M AT L A B

D E PA R T M E N T O F C H E M I C A L A N D B I O M O L E C U L A R E N G I N E E R I N G
U N I V E R S I T Y O F D E L AWA R E

Version 2015-10-20-a
First version June 27, 2013
Copyright © 2015 by Eric M Furst

Department of Chemical and Biomolecular Engineering
Allan P. Colburn Laboratory
150 Academy Street
University of Delaware
Newark, Delaware 19716 USA

email—furst@udel.edu
website—lem.che.udel.edu

October 21, 2015

Contents

1 Introduction

3 Imaging for particle tracking
3 Image quality
5 Frame rate and exposure time
5 Detection noise
6 Signal to noise
8 Other imaging artifacts

9 Particle tracking steps
9 Image filtering
11 Locate particles
13 Refine the initial location
15 Check for bias

19 Creating particle trajectories
19 Generate particle positions in all frames
21 Link particle trajectories

25 Trajectory analysis
25 Calculating the MSD

iv eric m. furst

27 Matlab code
28 Ftrack.m
30 MSD.m
33 SNR.m
36 vignette.m

39 Notes on Matlab
39 Image processing
40 Plotting commands
40 Basic Matlab

List of Figures

1 Sample fluorescence image and image histogram. 3
2 Images of one particle in the paraxial focal plane and two that are out

of focus. 4
3 (Top) Image detail before filtering. (Bottom) A close-up of a single

particle. Pixel-to-pixel noise is evident in this magnified image. 7
4 Masked regions (black) used to calculate the signal in reference to the

unmasked background regions (noise). Out of focus particles consti-
tute part of the noise in the image. 7

5 Normalized histograms of the noise (lower values) and signal (higher
values). A wide separation of these distributions indicates a high signal-
to-noise ratio. 8

6 Image detail after applying the bpass(I,1,10) function. This top im-
age uses the entire dynamic range of the color map, while the bottom
has been scaled. 9

7 A sequence of unscaled (top row) and scaled (bottom row) images us-
ing 2w = 5, 10, and 20 and ξ = 1. 11

8 (Top) A magnified image of a single fluorescent particle after apply-
ing bpass. (Bottom) A histogram of the particle intensity and cor-
responding Gaussian fit. 12

9 pkfnd output indicated by red circles on the original (unfiltered) im-
age. 14

10 cntrd.m output indicated by blue circles on the original (unfiltered)
image. The initial location estimates produced by pkfnd.m are shown
in red. 16

11 Histogram of x- and y-positions modulo 1 is used to discern bias in
the centroid location algorithm. The top histogram was generated us-
ing a value of the feature size in pixels, w = 11, the middle using w
= 9, and the bottom histogram using w = 7. There are 30,354 posi-
tions in each histogram. 17

12 Histogram of trajectory lengths. The vast majority are short trajec-
tories due to particle movement in and out of the focal plane. 23

vi eric m. furst

13 (Top) Histogram of trajectory lengths with mem = 2 and goodenough
= 0. (Bottom) Trajectory lengths with mem = 0 and goodenough =
20. 23

Introduction

This tutorial summarizes the basic steps in particle tracking using the
Matlab code authored by Daniel Blair and Eric Dufresne. The Matlab
routines are based on the IDL code by John Crocker and Eric Weeks.

This tutorial is organized into three main chapters with the follow-
ing aims:

• Summarize the methods for evaluating images best suited for par-
ticle tracking, including particle image size, image contrast, and
quantifying signal-to-noise;

• Understanding the steps used to identify particles in each frame;

• Track particles in movies to find the positions in each frame and
link these into trajectories that can be analyzed.

First-time readers may want to skip the first chapter on image quality
and proceed directly to the particle tracking chapters. The routines for
tracking in a movie are described in Creating particle trajectories, but
readers should work through the subroutines of the chapter Particle
tracking steps to understand important parameters that must be set.
These parameters have a significant effect on the tracking quality.

Imaging for particle tracking

Image quality

Particle tracking begins with images of particles collected using video
microscopy. While bright field images may be used, fluorescence mi-
croscopy provides a high contrast that leads to a good signal to noise
ratio (SNR). The chief disadvantages of fluorescence imaging are pho-
tobleaching over time and the background fluorescence produced by
particles out of the focal plane, which contributes to the noise when
estimating the locations of the particles.

Fig 3 shows a sample image of fluorescent particles. The image has
8-bit depth, so the grayscale pixels have integer values between 0 and
255. The image is 574×574 pixels. It was cropped from a larger image
from a megapixel (1024×1024) camera. Notice that the image has
a non-uniform background intensity. This must be corrected before
particle tracking. The image has a good dynamic range that uses
a wide extent of the possible 8-bit values. A histogram of the pixel
intensity is shown in fig 3. Only two pixels reach the maximum value
255, and the rest are distributed with intensities well below this. The
brightest pixels associated with in-focus particles are in the range
of 200-255. A slightly lower intensity could be used to avoid image
saturation, when multiple pixels are at the highest intensity value of
the camera.

100
101
102
103
104

nu
m

be
r o

f p
ix

el
s

250200150100500
intensity

Figure 1: Sample fluorescence image
and image histogram.

Read this image file using the command:

>> I = imread (’ SampleImage . t i f ’) ;

A quick way to check the image histogram is using the imhist com-
mand in Matlab:

>> imhis t (I) ;

We can also count the number of saturated pixels using the histc
command. Assuming an 8-bit image in which the maximum value is
255,

>> h i s t c (I (:) , 2 5 5 : 2 5 5)

4 eric m. furst

ans =

1

>>

The sample output indicates that there is one pixel that has the max-
imum value, which is acceptable. A large number of saturated pixels
would likely lead to poor particle tracking. It is best to detect satu-
rated pixels at the beginning of an experiment.

In a fluorescence image, particles that are closest to the focal plane
appear as bright disks with an approximately Gaussian intensity dis-
tribution. Particles above and below the focal plane will appear as
rings with a central spot, as shown in fig 2. These images typify the
convolution of the particle image with the point spread function (PSF)
of the imaging system. The PSF represents an intensity distribution
resulting from a point source when viewed through the microscope.
The maximum lateral resolving power d of a microscope is determined
by the diffraction limit

d =
0.61λ0

NA (1)

where NA is the numerical aperture of the objective.1 For a high1 The numerical aperture also deter-
mines the amount of light collected by
the microscope.

quality water immersion microscope objective with NA = 1.2 and
fluorescence emission λ = 520nm (the peak emission for fluorescein
isothiocyanate, FITC) the lateral resolution is at best 520 nm, which
is substantial fraction of the physical particle size. Non-immersion
objectives are limited to NA values below 1; the lateral resolution for
a 40× plan-apochromat objective with NA = 0.7 is 890 nm. It is
important that the rings remain symmetric as the particles move in
and out of the focal plane. Rings that appear pinched or skewed are
an indication that the illumination or imaging system is not aligned
properly.

Figure 2: Images of one particle in the
paraxial focal plane and two that are
out of focus.

A number of factors influence the quality of video microscopy data,
including:

1. exposure time and frame rate of the camera

2. detection noise

3. fluorescence brightness of the particles and electronic gain of the
detector

Video microscopy uses an electronic camera with a pixelated ar-
ray of detectors. Like any optical detector, the camera converts light
power to electrical current, and can be a charge-coupled device (ccd),
intensified ccd (iccd), electron-multiplied ccd (EM-ccd) or so-called
CMOS device based on an active-pixel sensor. The basis of operation

particle tracking with matlab 5

is similar. Each pixel accumulates photoelectrons during an integra-
tion time,2 σ. The number of charges accumulated is converted by the 2 Also referred to as exposure time or

shutter time.camera to a numerical value (digital) or voltage (analog) representing
the detected light intensity.

Frame rate and exposure time

Most video cameras today acquire images at a frame rate specified
by the user, such as 100 frames per second (fps). The frame rate is
the time between complete images, and ultimately limits the shortest
lag times of particle tracking data τmin = 1/f , are chosen such that
the exposure time σ is at most one tenth as long as the time between
frames, σ ≤ 0.1τmin. This ensures that the particles do not move too
much during the image acquisition. The minimum exposure time will
depend on the sensitivity of the camera, the intensity of fluorescence
emission of the particles, and the overall tolerance to noise.3 3 Are there any examples of the

particle intensity as a function of size?The frame rate of NTSC compatible ccd cameras (known as the
RS-170 standard) is fixed at 30 fps. Such analog cameras are still
common and can be recorded directly to video tape or DVD for later
retrieval.4 4 The NTSC standard produces

480i video—480 interlaced vertical
lines. The horizontal resolution is
typically 640 pixels and the pixels
have an aspect ratio of 4:3. PAL video
standards used in Europe are 525i at
25Hz.

Detection noise

Noise is inherent to electronic imaging systems due to both the quan-
tization of light as photons and the electronics that carry minute
photoelectron charges and convert them into the information we see as
a pixel value in an image.

Photons are absorbed by the detector to create photoelectrons.5 5 This is the semi-classical description
of light; it propagates as waves, but is
detected as particles.

The instantaneous conversion rate α(t) in photoelectrons per time is
proportional to the instantaneous incident power W (t) at the detector,

α(t) =
η(λ)

hν
W (t) (2)

where η(ν) is the detector quantum efficiency at the wavelength
λ = c/ν and h is Planck’s constant.6 While eqn 2 is straightfor- 6 What are the typical quantum

efficiencies of ccd cameras?ward in that the instantaneous photocurrent is proportional to the
instantaneous power, consider that photons arrive at random intervals,
and thus W (t) is stochastic. Therefore, the number of photoelectrons
generated during the detector integration time will vary. This fluctu-
ation is the shot noise. If n is the measured number of photoelectron
conversions over the detector integration time σ, then the mean value
is simply 〈n〉 = σ〈α〉σ photoelectrons per second, but the normalized
variance is

〈n2〉 − 〈n〉2

〈n〉2
=

1
〈n〉

+
〈W 2〉σ − 〈W 〉2σ

〈W 〉2σ
(3)

6 eric m. furst

where 〈W 〉σ is the time-averaged source intensity, which is also as-
sumed to fluctuate. There are two contributions to the normalized
variance of n in eqn 3—one from the fluctuations of the source, and
the first term on the right side of the eqn, which comes from the quan-
tum noise. We see that the shot noise scales inversely with the mean
photoelectron current. Shot noise will limit the signal-to-noise ratio of
an image at low light intensity levels or short exposure times. In gen-
eral, the SNR is the inverse of the normalized variance. Based on eqn
3, In the absence of source fluctuations, the SNR is proportional to
the rate of photoelectron conversions. Therefore, increasing the light
intensity or integration time should improve the SNR.

In most cases, shot noise will be the limiting source of noise of the
camera. Nonetheless, there are several forms of noise in video imag-
ing that should be also kept in mind. An additional source of noise
is the dark current of the detector. This noise is thermionic in origin
for semiconductor-based detectors—the thermal energy at the detec-
tor active area produces a background current even in the absence of
light. This is the reason that some sensitive cameras used under low
light conditions or for short exposure times employ a cooled detector.
Similarly, there is the Johnson noise of the camera electronics due to
the finite temperature of the charge carriers.7 Johnson noise is a mani-7 See H. Nyquist, “Thermal Agitation

of Electric Charge in Conductors”,
Phys. Rev. 32, 110 (1928)

festation of fluctuation-dissipation. Finally, readout noise arises in the
photoelectron digitization process. For ccd cameras with slow readout
frequencies (< 1 MHz), typical readout noises are small. However, for
fast ccd cameras (readout frequencies ≥ 10 MHz), readout noise can
dominate shot noise.

Signal to noise

In image processing, it is common to characterize image SNR in deci-
bels (dB) as88 See Russ, p. 376

SNR = 10 log
(
σimage
σnoise

)
(4)

where σimage and σimage are standard deviations of the image and
noise pixel intensities, respectively. The simpler images of bright par-
ticles on a (mostly) dark background suggest simpler criteria for the
SNR. Savin and Doyle,9 for instance, calculate the signal as the differ-9 Savin, T. & Doyle, P. S. Static and

Dynamic Errors in Particle Tracking
Microrheology. Biophys. J. 88, 623–
638 (2005).

ence between the local maximum brightness value of a particle and the
average brightness around the spot. The noise is the standard devia-
tion of the brightness in regions that exclude in-focus and out-of-focus
particles.10 The Rose Criterion states that a SNR of at least 5 dB is10 Some define this as a contrast-to-

noise (CNR) ratio. See, for instance,
Edelstein, W. A.; Bottomley, P. A.;
Hart, H. R.; Smith, L. S. (1983).
"Signal, noise and contrast in nuclear
magnetic resonance (NMR) imag-
ing". Journal of Computer Assisted
Tomography 7 (3): 391–401.

required to distinguish image features with 100% certainty.11

11 Bushberg, J. T., et al., The Essen-
tial Physics of Medical Imaging, (2e).
Philadelphia: Lippincott Williams &
Wilkins, 2006, p. 280.

Let’s take a closer look at the signal and noise histograms.

particle tracking with matlab 7

The function SNR.m provides a measure of the signal-to-noise ratio of a
particle tracking image. Based on Savin and Doyle’s method, particles
are located by the particle tracking methods discussed below. These
particle images are masked and the pixel intensities of the remaining
image calculated. This constitutes the background from which par-
ticles are distinguished. Likewise, the pixel intensities of the masked
particles are calculated.

Figure 3: (Top) Image detail before
filtering. (Bottom) A close-up of a
single particle. Pixel-to-pixel noise is
evident in this magnified image.

This is a measure of the signal. The SNR is

SNR =
signal− noise

σnoise
. (5)

Generate a histogram of the noise with the command

>> I = double (imread (’ SampleImage . t i f ’)) ;
>> [s i gna l , no i s e] = SNR(I , 5) ;

The second value in SNR is the typical feature size, roughly the di-
mensions of a particle in pixels. The SNR.m routine will output the
following:

Maximum imagebp value i s 53 .1866
Using va lue s > 31.912
l o ca t ed 24 p a r t i c l e s .
Mean s i g n a l : 222
Mean no i s e : 129.9838
Standard dev i a t i on no i s e : 9 .5949
Signal−to−no i s e : 9 . 5901(9 . 8182 dB)

An image appears that shows the masked regions (signal) and the
background region used to calculate the signal-to-noise-ratio.

The signal-to-noise data can be written to files for further analysis.
Likewise, generate a histogram for the signal,

>> [s i g n a l h i s t , s i g n a l b i n] = hist (s i gna l , (max(s i g n a l) . . .
−min(s i g n a l))) ;

and noise

>> [no i s e h i s t , no i s eb in] = hist (no i se , (max(no i s e)−min(no i s e))) ;

then check the histograms in Matlab using

>> bar (s i gna lb in , s i g n a l h i s t)
>> hold
Current plot held
>> bar (no i seb in , n o i s e h i s t)

Figure 4: Masked regions (black)
used to calculate the signal in refer-
ence to the unmasked background
regions (noise). Out of focus particles
constitute part of the noise in the
image.

The number of pixels that make up noise vastly outnumber the num-
ber of pixels that constitutes the signal. We normalize both by their
respective areas to illustrate their relative distributions and relation-
ships to each other.

8 eric m. furst

>> s i gp i x = sum(s i g n a l h i s t) ;
>> no i s ep i x = sum(n o i s e h i s t) ;
>> s i g n a l h i s t = s i g n a l h i s t / s i g p i x ;
>> no i s e h i s t = n o i s e h i s t / no i s ep i x ;

Now replot the normalized histograms.

>> bar (no i seb in , n o i s e h i s t)

Both signal and noise histograms can be written to files to use other
data plotting software:

>> dlmwrite (’ noise_histogram ’ , [n o i s e h i s t ; no i s eb in] ’) ;
>> dlmwrite (’ s igna l_histogram ’ , [s i g n a l h i s t ; s i g n a l b i n] ’) ;

60 80 100 120 140 160 180 200 220 240 260
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 5: Normalized histograms of
the noise (lower values) and signal
(higher values). A wide separation of
these distributions indicates a high
signal-to-noise ratio.

These are shown in fig 5. The normalized histograms clearly show the
distribution of the signal and noise intensities, and their separation.

A final note: The SNR function masks candidate particles to calcu-
late the image noise. Likewise, the brightness of the particle images
is also calculated. However, the brightness distribution is sensitive to
the feature size w. Depending on its value, pixels near the edges of
particles are included in the noise or with the signal. To reduce this
sensitivity, we double the value of w when calculating the mask for the
noise image, and use w− 2 when evaluating the signal.

Other imaging artifacts

When the integration time of a ccd detector is sufficiently long, pho-
toelectron charges collected in the sensor’s electronic “bins” in the
brightest part of the image will overflow to neighboring bins. This re-
sults in blooming of the image. The intensity or exposure time should
be reduced to avoid this condition.

Finally, some cameras produce interlaced images. Each video frame
consists of two fields consisting of the odd and even lines of the image.
For the RS-170 standard, the fields are acquired 1/60th of a second
apart. Since particles may move during the time between the fields are
scanned, interlaced images can have a “wavy” appearance that results
in poor tracking. These image frames should be de-interlaced by using
only one of the fields before they are processed further.

Particle tracking steps

In this chapter, we go step-by-step through the particle tracking algo-
rithm. We focus on how images are processed to identify the particles
that will be tracked.

The key particle tracking functions introduced here are:

bpass.m – Band pass filter used to remove noise in images prior to
locating particles

pkfnd.m – Identification and location estimate of particles in a
single frame based on locating the brightest pixels

cntrd.m – Particle location refinement based on calculating the
centroid of the intensity distribution around the central bright pixel

The particle tracking routines discussed in the next section will use
these three functions on every frame of a movie.

Figure 6: Image detail after applying
the bpass(I,1,10) function. This top
image uses the entire dynamic range
of the color map, while the bottom
has been scaled.

Image filtering

The first step in particle tracking is to filter noise from the image.
Read the image in with the command

>> I = double (imread (’ SampleImage . t i f ’)) ;

Fig 3 is a cropped image represented by the two-dimensional array I
before the filtering operations are applied.

Contrast gradients in the image complicate the process of identi-
fying potential particles, but such variations can easily be subtracted
using a boxcar average due to the small image size and wide separa-
tion of the particle features. The boxcar average is taken over a region
2w + 1, where w is an integer larger than the single sphere’s image
radius in pixels, but smaller than the spacing between particles. Each
pixel is given a new value

Iw(x, y) = 1
(2w+ 1)2

w∑
i,j=−w

I(x+ i, y+ j). (6)

10 eric m. furst

The second filter reduces the random noise of individual pixels by
averaging the value of nearby pixels. We perform a Gaussian average
for each pixel with a half-width ξ = 1 pixel over the same region w,

Iξ(x, y) =

∑w
i,j=−w I(x+ i, y+ j) exp

(
− i

2+j2

4ξ2

)
[∑w

i=−w exp (−i2/4ξ2)
]2 . (7)

Since both high- and low-pass filters are performed over the same
region w, they are calculated simultaneously using the bpass.m func-
tion.12 The function output is a new image, which we call Ib,12 Note that the Matlab code uses the

feature diameter and not the radius!
>> Ib = bpass (I , 1 , 1 0) ;

The three parameters of bpass are image_array, lnoise, and lobject,
corresponding to the image, the noise correlation ξ and the region di-
mension w. View the filtered image with the command

>> imshow(Ib) ;

The output image, fig 6, shows the result of bpass.m. The image
appears quite dim, since it now has a range of values between 1 and
51.2. An image scaled to the entire colormap can be viewed using

>> imshow(Ib , [0 max(max(Ib))]) ;

and saved by first scaling the image (assuming an 8-bit image) then
writing the image file

>> Ibs ca l ed = Ib . /max(max(bcrop)) . ∗ 2 5 5 . ;
>> imwrite (Ibsca l ed , gray , ’ ScaledImage . png ’) ;

When saving files it is best to use a file format that does not use
a lossy compression algorithm. The portable network graphics (PNG)
format is a good choice, and TIFF files are also acceptable, as long
as they do not use compression, such as JPEG. Matlab defaults to a
uncompressed TIFF file, which leads to large file sizes.13 Although13 A 1024×1024 array 12-bit ccd

camera saves images on the order of
2MB. A 30 second video captured at
100 frames per second will yield about
6GB of uncompressed data.

Matlab will write JPEG format with a lossless compression algorithm,
some operating systems, including Apple’s OS X, do not read these
files natively.

A sequence of unscaled and scaled images using 2w = 5, 10, and 20
are shown in fig 7. Notice that the brightness of the images increases
as w increases. The brightness is given by the normalization constant

K0 =
1
B

{
w∑

i=−w
exp

[
−(i2/2ξ2)

]}2

−
[
B/(2w+ 1)2] (8)

where B =
[∑w

i=−w exp
(
−i2/4ξ2)]2.

particle tracking with matlab 11

Now that the background intensity variations and pixel-to-pixel
noise have been filtered, we can proceed to finding the location of each
particle.

Figure 7: A sequence of unscaled (top
row) and scaled (bottom row) images
using 2w = 5, 10, and 20 and ξ = 1.

Locate particles

Determining particle locations in an image follows two steps: identi-
fying candidate particles by the brightest pixels, then refining these
location estimates by calculating the centroid-weighted position.

First, locate the brightest pixels. A magnified image of
a single particle is shown in Fig 8. Let I(x, y) represent the intensity
of the particle image. Remember, this isn’t an “exact” image of the
particle, but a convolution of the particle’s fluorescence emission and
the point spread function of the imaging system after applying the
low- and high-frequency bandpass filters.

We first identify the locally brightest pixel for each particle, which
serves as an initial estimate of the particle location, (x0, y0). The
locally brightest pixels in the image are those with the highest values

12 eric m. furst

within w pixels, where w is approximately the radius of the particle
image and smaller than the average distance between particles. From
here, most tracking routines only accept the brightest 30-40% of these
pixels as particle candidates.

Referring to the magnified particle image in Fig 8 again, the bright-
est pixel is close to the image center, and to a reasonable approxi-
mation, the image Ii of this ith particle is two-dimensional Gaussian
centered at the position ri,

Ii(r) = I0 exp
(
−|r− ri|2

s2

)
. (9)

200
150
100
50
0

in
te
ns
ity

1050-5-10
pixel

Figure 8: (Top) A magnified image
of a single fluorescent particle after
applying bpass. (Bottom) A his-
togram of the particle intensity and
corresponding Gaussian fit.

The width of the intensity distribution in Fig 8 is s = 2.98± 0.04
pixels. Notice that the brightest pixel isn’t quite at the center of the
fitted Gaussian distribution. It is located to the left by about 0.02
pixels. This offset reflects the fact that the center of the intensity
distribution can be located more accurately than the maximum—
which is at best within a half a pixel of the center—and serves as a
method of refining the location of each particle to sub-pixel resolution.

To find the brightest pixels as candidate particles, we use the
pkfnd.m function:

>> pk = pkfnd (Ib , 42 , 1 0) ;

This function has three parameters pkfnd(im,th,sz): im is the image
to process, th is the threshold value for identifying the brightest pix-
els, and sz is an optional parameter for noisy data that should be set
roughly to the diameter of the particle image.

A rough estimate of the threshold value can be deter-
mined by the maximum pixel value in the bandpass filtered image,

>> max(Ib (:))

ans =
70.5293

A good estimate of the threshold value is about 60% of the maximum
pixel value.

The pkfnd function above locates 28 candidate particles in our
image,

>> whos pk
Name S i z e Bytes Class At t r ibute s

pk 28x2 448 double

The array consists of two columns, the initial positions of each particle
(x0, y0). In fig 9 we overlay the values of pkfnd with the image I:

particle tracking with matlab 13

>> imshow(I , gray)
>> hold on
>> plot (pk (: , 1) , pk (: , 2) , ’ ro ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’ , 2)

The first ten location estimates in this case are:

>> pk

pk =
16 422
40 442
64 78
90 562

126 194
127 330
164 293
176 247
194 484
196 348

Refine the initial location

The intensity weighted centroid surrounding the brightest pixel serves
as a refinement for the particle location and provides sub-pixel reso-
lution for particle tracking. For each particle, this correction is calcu-
lated as (

εx
εy

)
=

1
m0

∑
i2+j2≤w2

(
i

j

)
I(x0 + i, y0 + j) (10)

where m0 =
∑
i2+j2≤w2 I(x0 + i, y0 + j) is the integrated brightness of

the particle image. The refined particle location is

(xi, yi) = (x0 + εx, y0 + εy). (11)

Calculating the centroid location is accomplished using the cntrd.m
function:

>> cnt = cntrd (Ib , pk , 1 3) ;

The function has three input parameters, cntrd(im,mx,sz). The
parameter im is the image to process. The bandpass filtered image
Ib is used here. The second parameter, mx are the locations of local
maxima to pixel-level accuracy from pkfnd.m. The third parameter,
sz is the diameter of the window used to calculate the centroid. The
value of sz should be large enough to capture the entire particle, but
not so large that it includes other nearby particles. The recommended
size is the diameter used with bpass plus 2, sz = 2w + 2, but sz
must be an odd integer.

The cntrd function outputs four values for each particle: the x-
coordinate, y-coordinate, brightness, and square of the radius of gyra-

14 eric m. furst

Figure 9: pkfnd output indicated by
red circles on the original (unfiltered)
image.

particle tracking with matlab 15

tion. Notice that not all particles are passed out of cntrd.m.

>> whos cnt
Name S i z e Bytes Class At t r ibute s

cnt 25x4 800 double

Three particles are missing when we compare cnt to the original par-
ticle list pk produced by the pkfnd.m function. These particles are
within 1.5× the value of sz from the edge of the image and are ex-
cluded from the final output. In fig 10 we replot the particle positions
cnt on the original image in blue. The locations pk are still repre-
sented by red circles. Sample output for the first ten particles is listed
below.

>> cnt

cnt =

1 .0 e+03 ∗

0 .0397 0 .4415 2 .0651 0 .0127
0 .0640 0 .0780 1 .8489 0 .0093
0 .1263 0 .1937 1 .6106 0 .0078
0 .1271 0 .3301 2 .0742 0 .0085
0 .1641 0 .2934 2 .1422 0 .0086
0 .1757 0 .2471 1 .3045 0 .0086
0 .1945 0 .4836 1 .6830 0 .0100
0 .1955 0 .3480 2 .2580 0 .0095
0 .2099 0 .3060 2 .3052 0 .0126
0 .2133 0 .0724 2 .2438 0 .0126

The first row in cnt corresponds to the second row in pk. The original
location (40, 442) has been refined to (39.7, 441.5).

Check for bias

An important check of the centroid location algorithm is to plot
a histogram of the particle location corrections produced by cntrd.m.
Once many particle positions are collected over multiple frames, the
histogram should be examined. For instance, with the output array
pos_lst where the x- and y-values of the centroids are pos_lst(:,1)
and pos_lst(:,2), respectively, the command is

>> hist (mod(pos_loc (: , 1) , 1) , 2 0) ;

which produces a histogram of the x-positions modulo 1. The his-
togram should look flat, which ensures there is no bias in the position
correction. We can also plot a histogram of the x- and y-positions
modulo 1:

16 eric m. furst

Figure 10: cntrd.m output indicated
by blue circles on the original (un-
filtered) image. The initial location
estimates produced by pkfnd.m are
shown in red.

particle tracking with matlab 17

>> hist (cat (1 ,mod(pos_lst (: , 1) , 1) ,mod(pos_lst (: , 2) , 1)) , 2 0) ;

or using a shortened form of the command

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

Figure 11: Histogram of x- and y-
positions modulo 1 is used to discern
bias in the centroid location algo-
rithm. The top histogram was gener-
ated using a value of the feature size
in pixels, w = 11, the middle using w
= 9, and the bottom histogram using
w = 7. There are 30,354 positions in
each histogram.

>> hist ([mod(pos_lst (: , 1) , 1) ;mod(pos_lst (: , 2) , 1)] , 2 0) ;

This plot is shown to the right. A common failure is to have peaks
in the histogram near 0 and 1 and a dip at 0.5. This pattern ap-
pears when the feature size is made too small, causing the x- and
y-coordinates to round off to the nearest integer value. Fig 11 shows
the centroid remainders for 104 particle positions. To generate the
histograms, use the following commands:

>> [n , xout] = hist ([mod(pos_lst_9 (: , 1) , 1) ;
mod(pos_lst_9 (: , 2) , 1)] , 2 0) ;

>> sta irs (xout , n , ’ c o l o r ’ , [0 . 5 0 . 5 0 . 5])
>> ylim ([0 1600])
>> box o f f

Creating particle trajectories

Locating particles in each frame is the first step of particle tracking.
The next step is to identify the same particle in neighboring frames so
a trajectory can be assembled as a function of time. Because particle
can diffuse into and out of the imaging plane, each frame may contain
a different number of particles.

The key particle tracking functions introduced here are:

Ftrack.m – Call the bpass, pkfnd and cntrd functions and gen-
erate the (unsorted) position list of particles in each frame. The
position list will be used by track to create particle trajectories.

track.m – Constructs trajectories from unsorted list of particle
positions, i.e. the output of Ftrack.m

The previous steps showed us how to locate particles in each image
frame of video sequence. The frames, if they are acquired at regular
intervals14, should act as a time stamp. Next we will use the particle 14 Verify that the image acquisition

is not skipping frames or acquiring
images at uneven intervals.

location routines for a series of images that make up a video sequence.
This is a two-step process of locating the particles in each frame,
followed by connecting the particle positions in adjacent frames to
create particle trajectories in time.

Generate particle positions in all frames

First, we will process all of the frames in an image sequence using
the routine Ftrack.m. This function creates a concatenated list of
particle positions for each frame. Ftrack handles reading the image
files successively and calling the functions bpass, pkfnd, and cntrd,
corresponding to the image bandpass filter, peak finding routine, and
centroid correction, respectively. The image sequence is assumed to be
composed of individual files in the working directory with the filename
fileheadxxxx.tif. The Ftrack(filehead,first,last,feature)
function has four input parameters. The parameters first and last
correspond to the image frame to start and end with. The parameter
feature is the expected size (diameter) of the particle image, the

20 eric m. furst

same feature size that is used in bpass, pkfnd and cntrd. Note that
feature needs to be odd. The function will return an error if it is not.

The video sequence we will analyze consists of 400 frames, saved as
uncompressed tiff files, with the header “frame.” Here is the output of
the function. 1515 It is interesting to adjust the

threshold value to change the number
of particles tracked. >> p o s l i s t = Ftrack (’ frame ’ , 1 , 4 00 , 11) ;

Frame number : 10
Frame number : 20
Frame number : 30
Frame number : 40
Frame number : 50
. . .
Frame number : 390
Frame number : 400
>>

The output, poslist, is a matrix with five columns.

>> whos p o s l i s t
Name S i z e Bytes Class At t r ibute s

p o s l i s t 15177x5 607080 double

Here are the first five rows of poslist.

>> format shortG
>> p o s l i s t (1 : 5 , :)

ans =

153.66 535 .81 3 .6716 e+05 9.0154 1
165 .05 568 .53 4 .4652 e+05 13.243 1
193 .36 702 .24 3 .001 e+05 8.6519 1
255 .68 276 .72 3 .1019 e+05 9.3801 1
285 .72 737 .54 4 .6125 e+05 9.5741 1

The five output columns are the x-position, y-position, m0 and m2
values, followed by the frame number. The first and second moments,
m0 and m2 are useful for evaluating the particle location results. For
instance, the user may limit particles within specific value ranges of
m0 and m2 as part of a cluster analysis, since these parameters tend
to cluster systematically, as discussed by Crocker and Grier.

Save the poslist data with the command

>> dlmwrite (’ pos l i s t_water_101fps ’ , p o s l i s t)

Check the tracking results with the function Ftrack_movie. The in-
put parameters are identical to Ftrack, but the routine generates the
image with circles representing the pkfnd and cntrd results. Notice
how the selection of variables such as the threshold value in pkfnd
and the feature size affect the tracking results. You will see a number

particle tracking with matlab 21

of particles “blinking” on and off as they move in and out of the focal
plane. This out-of-plane movement has important implications when
creating particle trajectories, as we discuss next.

Link particle trajectories

The final step is to link particle positions in each frame into tra-
jectories as a function of time. The track routine accomplishes
this by identifying the same particle in adjoining frames. To use
track(xyzs,maxdisp,param), we need two required parameters and
one optional parameter. The first, xyzs, is the particle position data
in the format:

(x) (y) (frame)
pos = 3.60000 5.00000 0.00000

15.1000 22.6000 0.00000
4.10000 5.50000 1.00000
15.9000 20.7000 2.00000
6.20000 4.30000 2.00000

Note that pos(0:d-1,*) contains the d coordinates and data for
all the particles, at the different times and must be positive, while
positionlist(d,*) contains the time t that the position was deter-
mined, and must be an integer (e.g. a frame number.) These values
must monotonically increase and be uniformly gridded in time.

To prune down poslist, we can use the command

>> pos = p o s l i s t (: , [1 : 2 , 5]) ;

to include on the x and y positions and frame number. However, this
is not entirely necessary, since the optional param can be used to pass
additional information to the track routine that allows the other
information about the particles to be sorted as well. More about that
in a bit.

The second required parameter, maxdisp, is an estimate of the
maximum distance that a particle moves in a single time interval. This
enables particles to be associated in one frame to another and is based
on the random thermal motion of non-interacting particles. While
many systems of interest may not precisely fit this model of motion,
the algorithm generally works well. However, it will not perform well
for particles moving in a strong convection. Other methods are needed
in that case.

One very important thing to recognize is that if a particle
moves out of the focal plane and returns some time later, it will be
given a different identifier and be treated as a separate particle. How-
ever, in some tracking software it is possible to specify the number of

22 eric m. furst

frames a single particle can be “missing” and still retain its identifying
number. In the sample data, particle 1 is not tracked in frame 3. It’s
location is missing, but the particle is tracked again in frames 4 and
5. Linking a particle trajectory across skipped frames has the advan-
tage of generating longer trajectories, which improves the statistics for
longer lag times.

Finally, there is the optional param structure, which has four fields,
which are assigned to four function variables:

memory_b = param .mem;
goodenough = param . good ;
dim = param . dim ;
qu i e t = param . qu i e t ;

If the parameters are not specified, then they are assigned default
values.

The variable memory_b is the number of time steps a particle can
be skipped before it is assigned a new identifier. This is useful for
maintaining trajectories of particles that move briefly out of the focal
plane and reduces the degree of trajectory truncation. The default
setting is zero. The second variable, goodenough limits trajectories
to those with values equal to or greater than its value. The default
value is two. This eliminates “noise” trajectories. The boolean variable
quiet eliminates text output from the routine when it is set to 1.

Set the parameters for track using the command:

>> param = s t ru c t (’mem’ ,0 , ’ good ’ ,0 , ’ dim ’ ,2 , ’ qu i e t ’ , 0)

param =

mem: 0
good : 0
dim : 2

qu i e t : 0

This creates a structure with the four required fields. Here we are
using the default values. Then pass param to the function,

>> l inked = track (pos , 1 0 , param) ;
50 of400 done . Tracking41 p a r t i c l e s 1 5 8 t ra ck s t o t a l
100 of400 done . Tracking38 p a r t i c l e s 1 2 6 t ra ck s t o t a l
150 of400 done . Tracking36 p a r t i c l e s 1 3 8 t ra ck s t o t a l
200 of400 done . Tracking28 p a r t i c l e s 1 4 7 t ra ck s t o t a l
250 of400 done . Tracking31 p a r t i c l e s 1 0 5 t ra ck s t o t a l
300 of400 done . Tracking34 p a r t i c l e s 1 3 9 t ra ck s t o t a l
350 of400 done . Tracking37 p a r t i c l e s 1 1 4 t ra ck s t o t a l
400 of400 done . Tracking39 p a r t i c l e s 1 4 7 t ra ck s t o t a l
>>

The total number of trajectories generated are (assuming a 4-column
output)

particle tracking with matlab 23

>> max(l i nked (: , 4))

ans =

814

The number of trajectories generated for this data set is 814!
Clearly there is some movement of particles into and out of the fo-
cal plane. Let’s look at the distribution of trajectory lengths. The
tabulate command is useful for this. For every particle identified in
column 4, tabulate will return the number of positions returned and
the frequency in the overall distribution.

>> tabu la t e (l i nked (: , 4))
Value Count Percent

1 42 0 .28%
2 2 0 .01%
3 9 0 .06%
4 35 0 .23%
5 34 0 .22%
6 8 0 .05%
7 4 0 .03%
8 6 0 .04%
9 20 0 .13%

10 13 0 .09%
. . .

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

Figure 12: Histogram of trajectory
lengths. The vast majority are short
trajectories due to particle movement
in and out of the focal plane.

We can plot a histogram of the trajectory lengths,

>> tra j_ length = tabu la t e (l i nked (: , 4))
>> [n , xout] = hist (t ra j_ length (: , 2) , 2 0) ;
>> sta irs (xout , n , ’ c o l o r ’ , [0 . 5 0 . 5 0 . 5]) ;
>> box o f f ;

which is shown in fig 12.
There are two things we can do at this point. We can accept

“skipped” frames and link particle candidates across several frames,
which will reduce the number of independent trajectories. This is ac-
complished using the memory variable. There is a drawback, however,
in that our data will include trajectories with skipped time steps. We
have to be careful when calculating the trajectory statistics, such as
the mean-squared displacement, to take into account the fact that se-
quential particle positions may be separated by more than one time
step. However, a key advantage for doing this is that the statistics at
longer lag times will improve by reducing trajectory truncation.

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Figure 13: (Top) Histogram of tra-
jectory lengths with mem = 2 and
goodenough = 0. (Bottom) Tra-
jectory lengths with mem = 0 and
goodenough = 20.

Second, we can limit the output to trajectories of a certain length
by specifying a value of goodenough. This parameter ensures that all
trajectories included in the results have a minimum length. Giving
goodenough a value of 2 or 3 will help reduce the overhead on the
tracking routine—there is no sense having a trajectory with only one

24 eric m. furst

position if we are to calculate the displacement of the particles. Such
“single position trajectories” occur when particles are close to the edge
of the imaging plane and move randomly into and out of the tracking
threshold.

Changing mem to 2 reduces the number of short trajectories, as
shown in fig 13. The second histogram shows the results of particle
tracking with mem = 0 and goodenough = 20, which truncates the
data even further.

Now we have an array of particle positions as a function of time
with increasing particle number. Use the last column to find the num-
ber of particles tracked. Obviously this is larger than the total number
of particles in the frame at any time due to trajectory truncation.
(How does this value change if memory_b is increased? What is the
longest trajectory? What is the shortest trajectory? What are the
trajectory statistics?

Trajectory analysis

Calculating the MSD

The function msd = MSD(linked) calculates the MSD for non-overlapping
lag times. Using the raw input from the previous functions, the output
will be the mean-squared displacement in pixels2 versus the lag time
in frames. The third column is the number of observations for each
row. Shorter lag times have a larger number of observations. These
decrease initially as the reciprocal of the number of frames. At longer
lag times, trajectory truncation causes the number of observations to
decrease even more quickly. Calibration is required to express these in
terms of the real displacement, and the frame rate is needed to convert
the lag time to a real time.

MSD.m will assume that linked consists of four columns: the x- and
y- positions, the frame number and the particle ID. If tracked was
passed along with m0 and m1, then it can be pruned down using the
command

>> l inked2 = l inked (: , [1 : 2 , 5 : 6]) ;

assuming that columns 3 and 4 contain the extraneous data.
To summarize, calculate the MSD with the command:

>> msd = MSD(l i nked) ;

and plot it with

>> loglog (msd (: , 1) ,msd (: , 2 : 3))

The third column is the number of observations per data point (lag
time).

Exporting the data. The MSD data can be exported for plotting
using a graphics program. Use the command:

>> dlmwrite (’ msd_cmos_water_101fps_roi2048 ’ ,msd) ;

Matlab code

What follows is Matlab code for the following functions:

Ftrack.m – Call the bpass, pkfnd and cntrd functions and gen-
erate the (unsorted) position list of particles in each frame. The
position list will be used by track to create particle trajectories.

MSD.m – Take trajectory data from track.m and calculate the MSD.

SNR.m – Analyze the signal to noise ratio for an image.

vignette.m – Called by SNR.m to create masks

These functions are listed in the usual order in which they are called.

28 eric m. furst

Ftrack.m

function pos_lst=Ftrack(filehead,first,last,feature)
% out=cntrd(im,mx,sz,interactive)
%
% PURPOSE:
% For each image in a directory
% Read image file
% Filter the image
% Find brightest pixels
% Find pixel centroids
% Concatenate positions to pos_lst
%
%
% INPUT:
% filehead: A string common to the image file names
% i.e. we assume that the filename is of the form ’framexxxx.tif’
%
% start: First frame to read
% end: Final frame to read
%
% feature: Expected size of the particle (diameter)
%
% NOTES:
%
% OUTPUT:
%
% CREATED: Eric M. Furst, University of Delaware, July 23, 2013
% Modifications:

if mod(feature,2) == 0
warning(’feature size must be an odd value’);
out=[];
return;

end

pos_lst=[];
for frame=first:last

if mod(frame,50)==0
disp([’Frame number: ’ num2str(frame)]);

end

% read in file
image = double(imread([filehead, num2str(frame,’%04u’),’.tif’]));

% Bandpass filter
imagebp = bpass(image,1,feature);

% Find locations of the brightest pixels Need to change the ’th’
% (threshold) argument to something that is specified or determined.
% Current value is 8000. A rough guide is 0.6*max(imagebp(:))
pk = pkfnd(imagebp, 8000, feature);

particle tracking with matlab 29

% Refine location estimates using centroid
cnt = cntrd(imagebp, pk, feature+2);
% cntrd can also accept "interactive" mode
% cnt = cntrd(imagebp, pk, feature+2, 1);

% Add frame number to tracking data. Use 0 as the reference frame.
cnt(:,5) = frame;

% Concatenate the new frame to the existing data
pos_lst = [pos_lst, cnt’];

end

% Format the position list so that we have four columns: x, y, m_0, m_2, frame
pos_lst = pos_lst’;

% It’s better to separate the particle tracking from the trajectory
% analysis. Once the particles are located in each frame, we can re-run the
% trajectory anslysis using different parameters.
%
% After generating the unsorted position lists, run track.m to generate the
% particle trajectories. The routine takes the following input:
% For the input data structure (positionlist):
% (x) (y) (t)
% pos = 3.60000 5.00000 0.00000
% 15.1000 22.6000 0.00000
% 4.10000 5.50000 1.00000
% 15.9000 20.7000 2.00000
% 6.20000 4.30000 2.00000
%
% Use the command:
% trajectories = track([pos_lst(:,1:2),pos_lst(:,5)],10);

30 eric m. furst

MSD.m

function msd = MSD(trackdata)
%
% PURPOSE:
% Calcuate the MSD from the output of track.m
%
%
% INPUT:
% trackdata: Trajectory data of the form:
% x-position y-position frame particle i.d.
%
% NOTES: The particle i.d. is assumed to increment from 1 to a maximum
% number of particles. For each particle i.d. the frame number is assumed
% to increase. Trajectories can include skipped frames.
%
% OUTPUT:
% MSD: will have three columns:
% Column 1: lag time (in frames)
% Column 2: MSD (in pixels)
% Column 3: number of observations in average
%
% CREATED: Eric M. Furst, University of Delaware, September 8, 2013
% Modifications:

MSD_list = [];

% Step through all particles in the tracked data set
for(particleid=1:max(trackdata(:,4)))

% Find the starting row of the particleid in trackdata
% This is the offset
index=find(trackdata(:,4)==particleid,1);

% Find the number of frames for the particle
% NOTE that this is NOT equivalent to time steps of 1 if the data has
% "skipped frames"
totalframe = sum(trackdata(:,4)==particleid);

% The maximum frame separation is totalframe - 1
max_step = totalframe - 1;

% Only analyze if there is more than one frame to calculate
% displacement
if max_step >= 1

disp([’Particle ’, num2str(particleid),’ of ’,...
num2str(max(trackdata(:,4))),’. Total frames: ’,...

num2str(totalframe)]);
% Step through all frame separations starting from 1 up to max_step
for step=1:max_step

% Remove comment for debugging
% disp([’Number of steps of length ’, ...
% num2str(step), ’: ’,num2str(fix(totalframe/step))]);

for j=1:(fix(max_step/step))

particle tracking with matlab 31

% Caculate lag time and mean-squared displacement between steps
delta_t = trackdata(index+j*step,3)...

- trackdata(index+(j-1)*step,3);
delta_r2 = (trackdata(index+j*step,1)...

- trackdata(index+(j-1)*step,1))^2 ...
+ (trackdata(index+j*step,2)...
- trackdata(index+(j-1)*step,2))^2;

% Remove comment for debugging
% disp([’ Step ’, num2str(j),’ of ’,...
% num2str(fix(totalframe/step)), ’ Delta t = ’,...
% num2str(delta_t), ’ Delta r^2 = ’,num2str(delta_r2)]);

MSD_list = [MSD_list, [delta_t,delta_r2]’];
end

end
end

end

MSD_list = MSD_list’;

% Build the MSD from the MSD_list
% the MSD will have three columns:
% Column 1: lag time (in frames)
% Column 2: MSD (in pixels)
% Column 3: number of observations in average

msd = [];
min_lag = min(MSD_list(:,1));
max_lag = max(MSD_list(:,1));
for lag=min_lag:max_lag

number_obs = sum(MSD_list(:,1)==lag);
if(number_obs>=1)

ind = find(MSD_list(:,1)==lag);
msd = [msd, [lag mean(MSD_list(ind,2)) number_obs]’];

end
end

msd = msd’;

% Run with
% >>msd = MSD(result)

32 eric m. furst

% Plot with
% >>loglog(msd(:,1),msd(:,2:3))

end

particle tracking with matlab 33

SNR.m

function [signal,noise]=SNR(image,feature,maskradius)
% [signal,noise]=SNR(image,feature,maskradius)
%
% PURPOSE: Calculate the SNR for a single image. We calculate the
% distribution of pixels that consist of our signal and the noise. The
% signal are the pixels associated with tracked particles. The noise
% consists of all pixels that are not signal. We do this by masking the
% tracked particles (assigning their region with a negative value). Note
% that the signal area is two pixels smaller than the feature size and the
% noise area is two TIMES feature size larger. This is to prevent the edges
% of particles from contributing to the signal or noise.
%
% Load the image with command: I = double(imread(’test.tif’));
%
%
%
% INPUT:
%
% image: The image to analyze
%
% feature: Expected size of the particle (diameter) that constitutes the
% signal region. A value 5 seems to work well.
%
% OPTIONAL INPUT:
%
% maskradius: If an image is vignetted, this is the radius
% of the image to use in calculations. Otherwise, this defaults to a value
% 450. A maskradius equal to -1 will ignore the vignette.
%
% NOTES:
%
% OUTPUT:
% signal: A vector of pixel values of the tracked particles
% noise: A vector of pixel values of the background image excluding tacked
% particles
%
% CREATED: Eric M. Furst, University of Delaware, July 25, 2013
% Modifications:

if mod(feature,2) == 0 || feature < 3
warning(’Feature size must be an odd value >= 3.’);
signal=[];
noise=[];
return;

end

% Set the maskradius to a default value
if nargin==2

maskradius=450;
end

34 eric m. furst

% read in file
% image = double(imread(filename));
% Bandpass filter
imagebp = bpass(image,1,feature);

% Find locations of the brightest pixels Need to change the ’th’
% (threshold) argument to something that is specified or determined.
% A rough guide is 0.6*max(imagebp(:))
th = 0.6*max(imagebp(:));
pk = pkfnd(imagebp, th, feature);
disp([’Maximum imagebp value is ’, num2str(max(imagebp(:)))]);
disp([’Using values > ’, num2str(th)]);
disp([’located ’ num2str(size(pk,1)) ’ particles.’]);

% Now we have particle positions. Need to mask the image at these
% locations. Make the particle mask. This is an array with -1 for
% values within a radius of half the feature size.
sz = 2*feature+1;
r = (sz-1)/2;
[x, y]=meshgrid(-(r):(sz-r-1),-(r):(sz-r-1));
particlemask=((x.^2+y.^2)<=r^2);
particlemask=((x.^2+y.^2)>r^2)-particlemask;

% go through list of particle locations
% make a circle of radius feature at each location with value -1
imagenoise = image;
for i=1:size(pk,1);

x = pk(i,1);
y = pk(i,2);
imagenoise((y-r):(y+r),(x-r):(x+r))=...

image((y-r):(y+r),(x-r):(x+r)).*particlemask;
end

% Make the mask for the signal
sz = feature-2;
r = (sz-1)/2;
[x, y]=meshgrid(-(r):(sz-r-1),-(r):(sz-r-1));
particlemask=((x.^2+y.^2)<=r^2);
particlemask=((x.^2+y.^2)>r^2)-particlemask;

particle tracking with matlab 35

% go through list of particle locations
% make a circle of radius feature at each location with value -1
imagesignal = image;
for i=1:size(pk,1);

x = pk(i,1);
y = pk(i,2);
imagesignal((y-r):(y+r),(x-r):(x+r))=...

image((y-r):(y+r),(x-r):(x+r)).*particlemask;
end

imagesignal = -imagesignal;

% Finally, mask the image to exclude vignette regions
imagenoise = vignette(imagenoise,maskradius,-1);
imagesignal = vignette(imagesignal,maskradius,-1);

% Now that we have maskimage, let’s calculate the noise
% Statistics of all regions with positive values > 0
index = find(imagenoise>0);
noise = image(index);
index = find(imagesignal>0);
signal = image(index);

imagesc(imagenoise./max(imagenoise(:)));
disp([’Mean signal: ’, num2str(mean(signal))]);
disp([’Mean noise: ’, num2str(mean(noise))]);
disp([’Standard deviation noise: ’, num2str(std(noise))]);
disp([’Signal-to-noise: ’, num2str((mean(signal)-mean(noise))/std(noise)),...

’(’,num2str(10*log10((mean(signal)-mean(noise))/std(noise))),’ dB)’]);

end

36 eric m. furst

vignette.m

function masked_image = vignette(image,radius,value)
% out=cntrd(im,mx,sz,interactive)
%
% PURPOSE:
% Mask a vignetted image by setting the locations outside of a
% radius equal to value. The default value is 0.
%
%
% INPUT:
% image: The original image
% radius: The radius of the desired vignette in pixels. If the radius is
% -1, just return the original image.
% value: Set to value. OPTIONAL. Default to 0.
%
% NOTES:
%
% OUTPUT: A masked image
%
% CREATED: Eric M. Furst, University of Delaware, July 23, 2013
% Modifications:

if nargin==2
value=0;

end

if radius<0

masked_image = image;

else
% Make mask
% Get the size of image
%
[ix, iy] = size(image);

% cx and cy are the center coordinates of the circle
cx=ix/2;
cy=iy/2;

%
[x,y]=meshgrid(-(cx-1):(ix-cx),-(cy-1):(iy-cy));
c_mask=((x.^2+y.^2)<=radius^2);
mask_outside = (c_mask-1)*(-value) + c_mask;

masked_image = image.*c_mask + mask_outside;
end

particle tracking with matlab 37

Notes on the routine cntrd.m
First, we basically make a mask with radius r = (sz + 1)/2. Here,

sz = 11. The variable ind was created by making a similar array
(dst) and using the values of the radius at each of the matrix entries.

>> msk(ind)=1.0 ;
>> msk

msk =

0 0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0

Notes on Matlab

Image processing

For help: help images

Help topic Description

images/colorspaces - Image Processing Toolbox — colorspaces
images/images - Image Processing Toolbox
images/imuitools - Image Processing Toolbox — imuitools
images/iptformats - Image Processing Toolbox — File Formats
images/iptutils - Image Processing Toolbox — utilities
images/imdemos - Image Processing Toolbox — demos and sample images

Helpful image processing commands
Note that a grayscale image can be either single or double but

must have values between 0 and 1. There are three commands to dis-
play an image, depending on the data type (image or array): imshow,
image, or imagesc.

Command Description

I = imread(’SampleImage.tif’); read an image
imshow(I) show image (native type)
I = double(imread(’SampleImage.tif’)); read an image as type double
image(I); display array as image (use for double types)
imagesc(I); scale data and display as image

imwrite(I,’filename.png’) write an image file. Format set by extension.
imhist(I); produce a histogram of the image I

max(max(b)) maximum value of matrix b
max(b(:)) alternate maximum value of matrix b
histc(I(:),255:255) count the number of saturated pixels in an 8-bit image

deconvblind Deblur image using blind deconvolution

figure Create a new figure window. Select using figure(1).

40 eric m. furst

Image processing used in particle tracking

Command Description

imagesc Scale data and display as image
imwrite(b,gray,’test.tif’) Write matrix b, where b = bpass(image,1,15)

The “Image enhancement and analysis” help page provides some
steps for flattening an image background (this could be helpful for
analyzing the images of riso pasta.)

Image statistics

Command Description

mean(I(:)) Calculate the mean value of an image
std(I(:)) Calculate the standard deviation of an image

Plotting commands

Command Description

plot(X, Y, params) Plot values
plot(pos_lst(:,6),pos_lst(:,5),’.’,’Color’,[0.5 0.5 0.5]) Plot with gray dot symbol

hist(data, bins) or hist(data) Create a histogram of data
h = findobj(gca,’Type’,’patch’); Change the color of a histogram
set(h,’FaceColor’,[0.5 0.5 0.5],’EdgeColor’,’w’)
box off Remove the plot frame

[n,xout] = hist(...) returns vectors n and xout containing the frequency counts
bar(xout,n) and the bin locations. Plot with the bar command or
stairs(X, Y, ’line spec’); the stairs command.
set(gca, ’YScale’, ’log’) set logarithmic scale

Basic Matlab

When using Matlab matrices, remember that Matlab uses a
(row, column) format.

Make a matrix with dimensions row × column:

>> matrix =

Loading a tab-delimited data file, such as the output to a
particle tracking routine:

particle tracking with matlab 41

>> foo = dlmread(’ f i l ename ’) ;

To write a delimitated file,
>> dlmwrite (’ f i l ename ’ , M, ’ d e l im i t e r ’) ;

The default —

Given the 7-column vector T,
>> whos T

Name S i z e Bytes Class At t r ibute s

T 110943x7 6212808 double

select the first column using
>> T(: , 1)

ans =

493.4690
493.4720
493.5570
493.5880
493.1810
493.5850
493.3890
493.1830
493.2670
493.2690
. . .

or a subset of the column,
>> T(1 : 1 0 , 1)

Size of matrix Use the size command.
>> s ize (back , 1)

ans =

92

For instance, to display the number of data points collected (here
backscatterdist is a matrix with columns t, x, y, and z)
disp ([’Number␣ o f ␣ backsca t t e r ed ␣ t r a j e c t o r i e s : ␣ ’ , . . .

num2str(s ize (ba ck s ca t t e rd i s t , 2))]) ;

Display format

The command format sets the output format. The default setting is
short. See help format for additional formats. Below is the differ-
ence between short and shortG

42 eric m. furst

>> format shor t
>> foo

foo =

1 .0 e+03 ∗

0 .0397 0 .4415 2 .0651 0 .0127
0 .0640 0 .0780 1 .8489 0 .0093
0 .1263 0 .1937 1 .6106 0 .0078
0 .1271 0 .3301 2 .0742 0 .0085
0 .1641 0 .2934 2 .1422 0 .0086
0 .1757 0 .2471 1 .3045 0 .0086
0 .1945 0 .4836 1 .6830 0 .0100
0 .1955 0 .3480 2 .2580 0 .0095
0 .2099 0 .3060 2 .3052 0 .0126
0 .2133 0 .0724 2 .2438 0 .0126

>> format shortG
>> foo

foo =

39 .7 441 .5 2065 .1 12 .7
64 78 1848 .9 9 .3

126 .3 193 .7 1610 .6 7 .8
127 .1 330 .1 2074 .2 8 .5
164 .1 293 .4 2142 .2 8 .6
175 .7 247 .1 1304 .5 8 .6
194 .5 483 .6 1683 10
195 .5 348 2258 9 .5
209 .9 306 2305 .2 12 .6
213 .3 72 .4 2243 .8 12 .6

>>

	Introduction
	Imaging for particle tracking
	Image quality
	Frame rate and exposure time
	Detection noise
	Signal to noise
	Other imaging artifacts

	Particle tracking steps
	Image filtering
	Locate particles
	Refine the initial location
	Check for bias

	Creating particle trajectories
	Generate particle positions in all frames
	Link particle trajectories

	Trajectory analysis
	Calculating the MSD

	Matlab code
	Ftrack.m
	MSD.m
	SNR.m
	vignette.m

	Notes on Matlab
	Image processing
	Plotting commands
	Basic Matlab

